These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 32065707
1. Phase Diagram for a Lysyl-Phosphatidylglycerol Analogue in Biomimetic Mixed Monolayers with Phosphatidylglycerol: Insights into the Tunable Properties of Bacterial Membranes. Wölk C, Youssef H, Guttenberg T, Marbach H, Vizcay-Barrena G, Shen C, Brezesinski G, Harvey RD. Chemphyschem; 2020 Apr 20; 21(8):702-706. PubMed ID: 32065707 [Abstract] [Full Text] [Related]
2. Lipid domain formation and non-lamellar structures associated with varied lysylphosphatidylglycerol analogue content in a model Staphylococcal plasma membrane. Rehal R, Barker RD, Lu Z, Bui TT, Demé B, Hause G, Wölk C, Harvey RD. Biochim Biophys Acta Biomembr; 2021 May 01; 1863(5):183571. PubMed ID: 33561475 [Abstract] [Full Text] [Related]
3. Multiple peptide resistance factor (MprF)-mediated Resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol. Andrä J, Goldmann T, Ernst CM, Peschel A, Gutsmann T. J Biol Chem; 2011 May 27; 286(21):18692-700. PubMed ID: 21474443 [Abstract] [Full Text] [Related]
4. The influence of mild acidity on lysyl-phosphatidylglycerol biosynthesis and lipid membrane physico-chemical properties in methicillin-resistant Staphylococcus aureus. Rehal RP, Marbach H, Hubbard ATM, Sacranie AA, Sebastiani F, Fragneto G, Harvey RD. Chem Phys Lipids; 2017 Aug 27; 206():60-70. PubMed ID: 28648851 [Abstract] [Full Text] [Related]
5. Molecular organization of bacterial membrane lipids in mixed systems--A comprehensive monolayer study combined with Grazing Incidence X-ray Diffraction and Brewster Angle Microscopy experiments. Wydro P, Flasiński M, Broniatowski M. Biochim Biophys Acta; 2012 Jul 27; 1818(7):1745-54. PubMed ID: 22465064 [Abstract] [Full Text] [Related]
6. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Cox E, Michalak A, Pagentine S, Seaton P, Pokorny A. Biochim Biophys Acta; 2014 Sep 27; 1838(9):2198-204. PubMed ID: 24780374 [Abstract] [Full Text] [Related]
7. The pH-dependence of lipid-mediated antimicrobial peptide resistance in a model staphylococcal plasma membrane: A two-for-one mechanism of epithelial defence circumvention. Rehal R, Gaffney PRJ, Hubbard ATM, Barker RD, Harvey RD. Eur J Pharm Sci; 2019 Feb 01; 128():43-53. PubMed ID: 30471412 [Abstract] [Full Text] [Related]
8. Structure and thermotropic behavior of the Staphylococcus aureus lipid lysyl-dipalmitoylphosphatidylglycerol. Danner S, Pabst G, Lohner K, Hickel A. Biophys J; 2008 Mar 15; 94(6):2150-9. PubMed ID: 18055539 [Abstract] [Full Text] [Related]
9. Lysyl-phosphatidylglycerol attenuates membrane perturbation rather than surface association of the cationic antimicrobial peptide 6W-RP-1 in a model membrane system: implications for daptomycin resistance. Kilelee E, Pokorny A, Yeaman MR, Bayer AS. Antimicrob Agents Chemother; 2010 Oct 15; 54(10):4476-9. PubMed ID: 20660664 [Abstract] [Full Text] [Related]
10. Binding of Daptomycin to Anionic Lipid Vesicles Is Reduced in the Presence of Lysyl-Phosphatidylglycerol. Khatib TO, Stevenson H, Yeaman MR, Bayer AS, Pokorny A. Antimicrob Agents Chemother; 2016 Aug 15; 60(8):5051-3. PubMed ID: 27216066 [Abstract] [Full Text] [Related]
11. Variations in carotenoid content and acyl chain composition in exponential, stationary and biofilm states of Staphylococcus aureus, and their influence on membrane biophysical properties. Perez-Lopez MI, Mendez-Reina R, Trier S, Herrfurth C, Feussner I, Bernal A, Forero-Shelton M, Leidy C. Biochim Biophys Acta Biomembr; 2019 May 01; 1861(5):978-987. PubMed ID: 30771288 [Abstract] [Full Text] [Related]
12. Alanyl-phosphatidylglycerol and lysyl-phosphatidylglycerol are translocated by the same MprF flippases and have similar capacities to protect against the antibiotic daptomycin in Staphylococcus aureus. Slavetinsky CJ, Peschel A, Ernst CM. Antimicrob Agents Chemother; 2012 Jul 01; 56(7):3492-7. PubMed ID: 22491694 [Abstract] [Full Text] [Related]
13. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ, Seaton P, Pokorny A. Biochim Biophys Acta; 2016 May 01; 1858(5):988-94. PubMed ID: 26514602 [Abstract] [Full Text] [Related]
14. The antimicrobial peptide microcin J25 stabilizes the gel phase of bacterial model membranes. Rintoul MR, Morero RD, Dupuy FG. Colloids Surf B Biointerfaces; 2015 May 01; 129():183-90. PubMed ID: 25863710 [Abstract] [Full Text] [Related]
15. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. Hoernke M, Schwieger C, Kerth A, Blume A. Biochim Biophys Acta; 2012 Jul 01; 1818(7):1663-72. PubMed ID: 22433675 [Abstract] [Full Text] [Related]
17. The interactions between phosphatidylglycerol and phosphatidylethanolamines in model bacterial membranes: the effect of the acyl chain length and saturation. Wydro P, Witkowska K. Colloids Surf B Biointerfaces; 2009 Aug 01; 72(1):32-9. PubMed ID: 19380216 [Abstract] [Full Text] [Related]
18. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes. Zhelev DV. Biophys J; 1996 Jul 01; 71(1):257-73. PubMed ID: 8804609 [Abstract] [Full Text] [Related]