These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 32072700
41. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). Yan Y, Wei M, Li Y, Tao H, Wu H, Chen Z, Li C, Xu JH. Plant Sci; 2021 Jan; 302():110728. PubMed ID: 33288029 [Abstract] [Full Text] [Related]
42. Validation of Yield Component Traits Identified by Genome-Wide Association Mapping in a tropical japonica × tropical japonica Rice Biparental Mapping Population. Eizenga GC, Jia MH, Jackson AK, Boykin DL, Ali ML, Shakiba E, Tran NT, McCouch SR, Edwards JD. Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951093 [Abstract] [Full Text] [Related]
43. Fine mapping of a major quantitative trait locus, qgnp7(t), controlling grain number per panicle in African rice (Oryza glaberrima S.). Hu Z, Cao L, Sun X, Zhu Y, Zhang T, Jiang L, Liu Y, Dong S, Sun D, Yang J, He H, Luo X. Breed Sci; 2018 Dec; 68(5):606-613. PubMed ID: 30697122 [Abstract] [Full Text] [Related]
44. Identification of QTLs for high grain yield and component traits in new plant types of rice. Donde R, Mohapatra S, Baksh SKY, Padhy B, Mukherjee M, Roy S, Chattopadhyay K, Anandan A, Swain P, Sahoo KK, Singh ON, Behera L, Dash SK. PLoS One; 2020 Dec; 15(7):e0227785. PubMed ID: 32673318 [Abstract] [Full Text] [Related]
45. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK. Mol Genet Genomics; 2010 Aug; 284(2):121-36. PubMed ID: 20602115 [Abstract] [Full Text] [Related]
46. Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.). Guo Y, Hong D. J Genet Genomics; 2010 Aug; 37(8):533-44. PubMed ID: 20816386 [Abstract] [Full Text] [Related]
47. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Theor Appl Genet; 2004 Dec; 110(1):1-11. PubMed ID: 15549232 [Abstract] [Full Text] [Related]
48. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z. Plant Biotechnol J; 2011 Dec; 9(9):1002-13. PubMed ID: 21447055 [Abstract] [Full Text] [Related]
49. Identification of candidate genes associated with positive and negative heterosis in rice. Venu RC, Ma J, Jia Y, Liu G, Jia MH, Nobuta K, Sreerekha MV, Moldenhauer K, McClung AM, Meyers BC, Wang GL. PLoS One; 2014 Dec; 9(4):e95178. PubMed ID: 24743656 [Abstract] [Full Text] [Related]
50. [Substitution mapping of QTL for panicle exertion using CSSL in rice (Oryza sativa L.)]. Yang DW, Zhu Z, Zhang YD, Lin J, Chen T, Zhao L, Zhu WY, Wang CL. Yi Chuan; 2009 Jul; 31(7):741-7. PubMed ID: 19586880 [Abstract] [Full Text] [Related]
51. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ. Theor Appl Genet; 2011 May; 122(7):1439-49. PubMed ID: 21318372 [Abstract] [Full Text] [Related]
52. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Terao T, Nagata K, Morino K, Hirose T. Theor Appl Genet; 2010 Mar; 120(5):875-93. PubMed ID: 20151298 [Abstract] [Full Text] [Related]
53. Screening of candidate genes and fine mapping of drought tolerance quantitative trait loci on chromosome 4 in rice (Oryza sativa L.) under drought stress. Nie YY, Zhang L, Wu YH, Liu HJ, Mao WW, Du J, Xiu HL, Wu XY, Li X, Yan YW, Liu GL, Liu HY, Hu SP. Ecol Evol; 2015 Nov; 5(21):5007-15. PubMed ID: 26640678 [Abstract] [Full Text] [Related]
54. Genetic Analysis of Agronomic Traits and Grain Iron and Zinc Concentrations in a Doubled Haploid Population of Rice (Oryza sativa L.). Calayugan MIC, Formantes AK, Amparado A, Descalsota-Empleo GI, Nha CT, Inabangan-Asilo MA, Swe ZM, Hernandez JE, Borromeo TH, Lalusin AG, Mendioro MS, Diaz MGQ, Viña CBD, Reinke R, Swamy BPM. Sci Rep; 2020 Feb 10; 10(1):2283. PubMed ID: 32042046 [Abstract] [Full Text] [Related]
55. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. Theor Appl Genet; 2003 Aug 10; 107(3):479-93. PubMed ID: 12736777 [Abstract] [Full Text] [Related]
56. Genetic mapping of a QTL controlling source-sink size and heading date in rice. Zhan X, Sun B, Lin Z, Gao Z, Yu P, Liu Q, Shen X, Zhang Y, Chen D, Cheng S, Cao L. Gene; 2015 Oct 25; 571(2):263-70. PubMed ID: 26123916 [Abstract] [Full Text] [Related]
57. A Novel Variation in the FRIZZLE PANICLE (FZP) Gene Promoter Improves Grain Number and Yield in Rice. Wang SS, Chung CL, Chen KY, Chen RK. Genetics; 2020 May 25; 215(1):243-252. PubMed ID: 32152046 [Abstract] [Full Text] [Related]
58. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.). Ma X, Han B, Tang J, Zhang J, Cui D, Geng L, Zhou H, Li M, Han L. Plant Physiol Biochem; 2019 Nov 25; 144():274-282. PubMed ID: 31593900 [Abstract] [Full Text] [Related]