These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
371 related items for PubMed ID: 32081715
1. Deamination gradients within codons after 1<->2 position swap predict amino acid hydrophobicity and parallel β-sheet conformational preference. Demongeot J, Seligmann H. Biosystems; 2020 May; 191-192():104116. PubMed ID: 32081715 [Abstract] [Full Text] [Related]
2. Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions. Seligmann H, Demongeot J. Int J Mol Sci; 2020 Jan 05; 21(1):. PubMed ID: 31948054 [Abstract] [Full Text] [Related]
3. On origin of genetic code and tRNA before translation. Rodin AS, Szathmáry E, Rodin SN. Biol Direct; 2011 Feb 22; 6():14. PubMed ID: 21342520 [Abstract] [Full Text] [Related]
4. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients. Demongeot J, Seligmann H. Naturwissenschaften; 2019 Jul 02; 106(7-8):44. PubMed ID: 31267209 [Abstract] [Full Text] [Related]
5. Theoretical minimal RNA rings mimick molecular evolution before tRNA-mediated translation: codon-amino acid affinities increase from early to late RNA rings. Demongeot J, Seligmann H. C R Biol; 2020 Jun 05; 343(1):111-122. PubMed ID: 32720493 [Abstract] [Full Text] [Related]
6. The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Demongeot J, Seligmann H. Acta Biotheor; 2019 Dec 05; 67(4):273-297. PubMed ID: 31388859 [Abstract] [Full Text] [Related]
7. A binary representation of the genetic code. Nemzer LR. Biosystems; 2017 May 05; 155():10-19. PubMed ID: 28300609 [Abstract] [Full Text] [Related]
8. Testing amino acid-codon affinity hypothesis using molecular docking. Moghadam SA, Preto J, Klobukowski M, Tuszynski JA. Biosystems; 2020 Dec 05; 198():104251. PubMed ID: 32966852 [Abstract] [Full Text] [Related]
9. Quadruplet codons: implications for code expansion and the specification of translation step size. Moore B, Persson BC, Nelson CC, Gesteland RF, Atkins JF. J Mol Biol; 2000 Apr 28; 298(2):195-209. PubMed ID: 10764591 [Abstract] [Full Text] [Related]
10. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli. Magliery TJ, Anderson JC, Schultz PG. J Mol Biol; 2001 Mar 30; 307(3):755-69. PubMed ID: 11273699 [Abstract] [Full Text] [Related]
11. Spontaneous evolution of circular codes in theoretical minimal RNA rings. Demongeot J, Seligmann H. Gene; 2019 Jul 15; 705():95-102. PubMed ID: 30940527 [Abstract] [Full Text] [Related]
13. Putative mitochondrial polypeptides coded by expanded quadruplet codons, decoded by antisense tRNAs with unusual anticodons. Seligmann H. Biosystems; 2012 Nov 15; 110(2):84-106. PubMed ID: 23041464 [Abstract] [Full Text] [Related]
14. First arrived, first served: competition between codons for codon-amino acid stereochemical interactions determined early genetic code assignments. Seligmann H. Naturwissenschaften; 2020 May 04; 107(3):20. PubMed ID: 32367155 [Abstract] [Full Text] [Related]
20. The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Rodin S, Rodin A, Ohno S. Proc Natl Acad Sci U S A; 1996 May 14; 93(10):4537-42. PubMed ID: 8643439 [Abstract] [Full Text] [Related] Page: [Next] [New Search]