These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 32082332

  • 1. Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection.
    Haile ZM, Malacarne G, Pilati S, Sonego P, Moretto M, Masuero D, Vrhovsek U, Engelen K, Baraldi E, Moser C.
    Front Plant Sci; 2019; 10():1704. PubMed ID: 32082332
    [Abstract] [Full Text] [Related]

  • 2. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM, Pilati S, Sonego P, Malacarne G, Vrhovsek U, Engelen K, Tudzynski P, Zottini M, Baraldi E, Moser C.
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [Abstract] [Full Text] [Related]

  • 3. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM.
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [Abstract] [Full Text] [Related]

  • 4. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B, Amrine KC, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, Cantu D.
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J, Trouvelot S, Héloir MC, Simon A, Dalmais B, Frettinger P, Cimerman A, Fermaud M, Roudet J, Baulande S, Bruel C, Choquer M, Couvelard L, Duthieuw M, Ferrarini A, Flors V, Le Pêcheur P, Loisel E, Morgant G, Poussereau N, Pradier JM, Rascle C, Trdá L, Poinssot B, Viaud M.
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS, Martinez A, Liger-Belair G, Jeandet P, Nuzillard JM, Cilindre C.
    J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941
    [Abstract] [Full Text] [Related]

  • 9. Botrytis cinerea Infection in Grape Flowers: Defense Reaction, Latency, and Disease Expression.
    Keller M, Viret O, Cole FM.
    Phytopathology; 2003 Mar; 93(3):316-22. PubMed ID: 18944341
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Botrytis prunorum Associated to Vitis vinifera Blossom Blight in Chile.
    Esterio M, Osorio-Navarro C, Carreras C, Azócar M, Copier C, Estrada V, Rubilar M, Auger J.
    Plant Dis; 2020 Sep; 104(9):2324-2329. PubMed ID: 32609075
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Botrytis cinerea causes different plant responses in grape (Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence.
    Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI.
    Front Plant Sci; 2024 Sep; 15():1433161. PubMed ID: 39166245
    [Abstract] [Full Text] [Related]

  • 14. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae).
    Rizvi SZ, Raman A, Wheatley WM, Cook G.
    Insect Sci; 2016 Apr; 23(2):313-25. PubMed ID: 25420720
    [Abstract] [Full Text] [Related]

  • 15. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.
    Dadakova K, Havelkova M, Kurkova B, Tlolkova I, Kasparovsky T, Zdrahal Z, Lochman J.
    J Proteomics; 2015 Apr 24; 119():143-53. PubMed ID: 25688916
    [Abstract] [Full Text] [Related]

  • 16. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes.
    Otto M, Geml J, Hegyi ÁI, Hegyi-Kaló J, Pierneef R, Pogány M, Kun J, Gyenesei A, Váczy KZ.
    Food Microbiol; 2022 Sep 24; 106():104037. PubMed ID: 35690441
    [Abstract] [Full Text] [Related]

  • 17. Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines.
    Si Ammour M, Castaldo E, Fedele G, Rossi V.
    Plants (Basel); 2020 Nov 11; 9(11):. PubMed ID: 33187064
    [Abstract] [Full Text] [Related]

  • 18. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.
    Ciliberti N, Fermaud M, Roudet J, Rossi V.
    Phytopathology; 2015 Aug 11; 105(8):1090-6. PubMed ID: 26218433
    [Abstract] [Full Text] [Related]

  • 19. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X, Glawe DA, Kramer E, Weller D, Okubara PA.
    Phytopathology; 2018 Jun 11; 108(6):691-701. PubMed ID: 29334476
    [Abstract] [Full Text] [Related]

  • 20. Strengthening Grapevine Resistance by Pseudomonas fluorescens PTA-CT2 Relies on Distinct Defense Pathways in Susceptible and Partially Resistant Genotypes to Downy Mildew and Gray Mold Diseases.
    Lakkis S, Trotel-Aziz P, Rabenoelina F, Schwarzenberg A, Nguema-Ona E, Clément C, Aziz A.
    Front Plant Sci; 2019 Jun 11; 10():1112. PubMed ID: 31620150
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.