These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Patel AK, Park KK, Hackam AS. Neuroscience; 2017 Feb 20; 343():372-383. PubMed ID: 28011153 [Abstract] [Full Text] [Related]
6. Viral delivery of multiple miRNAs promotes retinal ganglion cell survival and functional preservation after optic nerve crush injury. Mead B, Cullather E, Nakaya N, Niu Y, Kole C, Ahmed Z, Tomarev S. Exp Eye Res; 2020 Aug 20; 197():108071. PubMed ID: 32574667 [Abstract] [Full Text] [Related]
7. Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents. Stankowska DL, Mueller BH, Oku H, Ikeda T, Dibas A. Curr Eye Res; 2018 Jan 20; 43(1):84-95. PubMed ID: 29111855 [Abstract] [Full Text] [Related]
9. Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice. Feng L, Puyang Z, Chen H, Liang P, Troy JB, Liu X. eNeuro; 2017 Jan 20; 4(1):. PubMed ID: 28101532 [Abstract] [Full Text] [Related]
10. Effect of alpha lipoic acid on retinal ganglion cell survival in an optic nerve crush model. Liu R, Wang Y, Pu M, Gao J. Mol Vis; 2016 Jan 20; 22():1122-1136. PubMed ID: 27703307 [Abstract] [Full Text] [Related]
12. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Yungher BJ, Ribeiro M, Park KK. Invest Ophthalmol Vis Sci; 2017 Mar 01; 58(3):1743-1750. PubMed ID: 28324115 [Abstract] [Full Text] [Related]
13. Park7 protects retinal ganglion cells and promotes functional preservation after optic nerve crush via regulation of the Nrf2 signaling pathway. Ouyang L, He T, Xing Y. Graefes Arch Clin Exp Ophthalmol; 2023 Dec 01; 261(12):3489-3502. PubMed ID: 37199801 [Abstract] [Full Text] [Related]
14. Absence of galectin-3 promotes neuroprotection in retinal ganglion cells after optic nerve injury. Abreu CA, De Lima SV, Mendonça HR, Goulart CO, Martinez AM. Histol Histopathol; 2017 Mar 01; 32(3):253-262. PubMed ID: 27255346 [Abstract] [Full Text] [Related]
15. Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush. Ribas VT, Koch JC, Michel U, Bähr M, Lingor P. Mol Neurobiol; 2017 Jan 01; 54(1):72-86. PubMed ID: 26732591 [Abstract] [Full Text] [Related]
16. Carnosine decreases retinal ganglion cell death in a mouse model of optic nerve crushing. Kim HG, Heo H, Sung MS, Park SW. Neurosci Lett; 2019 Oct 15; 711():134431. PubMed ID: 31415801 [Abstract] [Full Text] [Related]
17. Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models. Wang X, Lin J, Arzeno A, Choi JY, Boccio J, Frieden E, Bhargava A, Maynard G, Tsai JC, Strittmatter SM. Invest Ophthalmol Vis Sci; 2015 Feb 05; 56(2):1357-66. PubMed ID: 25655801 [Abstract] [Full Text] [Related]
18. Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush. Wang W, Chan A, Qin Y, Kwong JMK, Caprioli J, Levinson R, Chen L, Gordon LK. Exp Eye Res; 2015 Nov 05; 140():1-9. PubMed ID: 26277582 [Abstract] [Full Text] [Related]