These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 32086594

  • 1. Bacterial non-specific nucleases of the phospholipase D superfamily and their biotechnological potential.
    Schwardmann LS, Nölle V, Elleuche S.
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3293-3304. PubMed ID: 32086594
    [Abstract] [Full Text] [Related]

  • 2. Comparative analysis of two non-specific nucleases of the phospholipase D family from the plant pathogen competitor bacterium Pantoea agglomerans.
    Schmitz S, Börner P, Nölle V, Elleuche S.
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2635-2648. PubMed ID: 30685815
    [Abstract] [Full Text] [Related]

  • 3. Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9.
    Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ, Kühlmann UC, Cooper A, Connolly BA, Hemmings AM, Moore GR, James R, Kleanthous C.
    J Mol Biol; 2001 Dec 07; 314(4):735-49. PubMed ID: 11733993
    [Abstract] [Full Text] [Related]

  • 4. Immobilized nucleases.
    Reddy LG, Shankar V.
    Crit Rev Biotechnol; 1993 Dec 07; 13(3):255-73. PubMed ID: 7693354
    [Abstract] [Full Text] [Related]

  • 5. Roles of metal ions in nucleases.
    Dupureur CM.
    Curr Opin Chem Biol; 2008 Apr 07; 12(2):250-5. PubMed ID: 18261473
    [Abstract] [Full Text] [Related]

  • 6. Characterization of Single Amino Acid Variations in an EDTA-Tolerating Non-specific Nuclease from the Ice-Nucleating Bacterium Pseudomonas syringae.
    Schmitz S, Wieczorek M, Nölle V, Elleuche S.
    Mol Biotechnol; 2020 Jan 07; 62(1):67-78. PubMed ID: 31749083
    [Abstract] [Full Text] [Related]

  • 7. Metal ions and phosphate binding in the H-N-H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions.
    Sui MJ, Tsai LC, Hsia KC, Doudeva LG, Ku WY, Han GW, Yuan HS.
    Protein Sci; 2002 Dec 07; 11(12):2947-57. PubMed ID: 12441392
    [Abstract] [Full Text] [Related]

  • 8. A non-specific nucleolytic enzyme and its application potential in EDTA-containing buffer solutions.
    Schmitz S, Nölle V, Elleuche S.
    Biotechnol Lett; 2019 Jan 07; 41(1):129-136. PubMed ID: 30390191
    [Abstract] [Full Text] [Related]

  • 9. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories.
    Aravind L, Makarova KS, Koonin EV.
    Nucleic Acids Res; 2000 Sep 15; 28(18):3417-32. PubMed ID: 10982859
    [Abstract] [Full Text] [Related]

  • 10. Observing one-divalent-metal-ion-dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo.
    Chang C, Zhou G, Gao Y.
    Elife; 2024 Aug 14; 13():. PubMed ID: 39141555
    [Abstract] [Full Text] [Related]

  • 11. Mutability of an HNH nuclease imidazole general base and exchange of a deprotonation mechanism.
    Eastberg JH, Eklund J, Monnat R, Stoddard BL.
    Biochemistry; 2007 Jun 19; 46(24):7215-25. PubMed ID: 17516660
    [Abstract] [Full Text] [Related]

  • 12. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes.
    Genna V, Colombo M, De Vivo M, Marcia M.
    Structure; 2018 Jan 02; 26(1):40-50.e2. PubMed ID: 29225080
    [Abstract] [Full Text] [Related]

  • 13. Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate.
    Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE.
    Proc Natl Acad Sci U S A; 1998 Aug 04; 95(16):9202-7. PubMed ID: 9689058
    [Abstract] [Full Text] [Related]

  • 14. Catalytic metal ions and enzymatic processing of DNA and RNA.
    Palermo G, Cavalli A, Klein ML, Alfonso-Prieto M, Dal Peraro M, De Vivo M.
    Acc Chem Res; 2015 Feb 17; 48(2):220-8. PubMed ID: 25590654
    [Abstract] [Full Text] [Related]

  • 15. Single-strand-specific nucleases.
    Desai NA, Shankar V.
    FEMS Microbiol Rev; 2003 Jan 17; 26(5):457-91. PubMed ID: 12586391
    [Abstract] [Full Text] [Related]

  • 16. Streptomyces nucleases.
    Joshi AP, Deshmukh SS.
    Crit Rev Microbiol; 2011 Aug 17; 37(3):227-36. PubMed ID: 21707467
    [Abstract] [Full Text] [Related]

  • 17. Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity.
    Ramrakhiani L, Chand S.
    Appl Biochem Biotechnol; 2011 Aug 17; 164(7):991-1022. PubMed ID: 21302142
    [Abstract] [Full Text] [Related]

  • 18. Modulation of phospholipase D activity in vitro.
    Mansfeld J, Ulbrich-Hofmann R.
    Biochim Biophys Acta; 2009 Sep 17; 1791(9):913-26. PubMed ID: 19286472
    [Abstract] [Full Text] [Related]

  • 19. Metal-free artificial nucleases based on simple oxime and hydroxylamine scaffolds.
    Fernandes L, Fischer FL, Ribeiro CW, Silveira GP, Sá MM, Nome F, Terenzi H.
    Bioorg Med Chem Lett; 2008 Aug 15; 18(16):4499-502. PubMed ID: 18667311
    [Abstract] [Full Text] [Related]

  • 20. The first crystal structure of a phospholipase D.
    Leiros I, Secundo F, Zambonelli C, Servi S, Hough E.
    Structure; 2000 Jun 15; 8(6):655-67. PubMed ID: 10873862
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.