These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 32086594

  • 21. Observing one-divalent-metal-ion dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo.
    Chang C, Zhou G, Gao Y.
    bioRxiv; 2024 Jul 11. PubMed ID: 38746211
    [Abstract] [Full Text] [Related]

  • 22. Generation of the BfiI restriction endonuclease from the fusion of a DNA recognition domain to a non-specific nuclease from the phospholipase D superfamily.
    Zaremba M, Urbanke C, Halford SE, Siksnys V.
    J Mol Biol; 2004 Feb 06; 336(1):81-92. PubMed ID: 14741205
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Nuclease Stn alpha from Streptomyces thermonitrificans: characterization of the associated adenylic acid preferential ribonuclease activity.
    Deshmukh SS.
    Curr Microbiol; 2007 Mar 06; 54(3):186-9. PubMed ID: 17294331
    [Abstract] [Full Text] [Related]

  • 26. Purification and biochemical properties of phospholipase D (PLD57) produced by Streptomyces sp. CS-57.
    Simkhada JR, Cho SS, Lee HJ, Yoo JC.
    Arch Pharm Res; 2007 Oct 06; 30(10):1302-8. PubMed ID: 18038909
    [Abstract] [Full Text] [Related]

  • 27. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases.
    Liu C, Wang L.
    Dalton Trans; 2009 Jan 14; (2):227-39. PubMed ID: 19089001
    [Abstract] [Full Text] [Related]

  • 28. The plant s1-like nuclease family has evolved a highly diverse range of catalytic capabilities.
    Lesniewicz K, Karlowski WM, Pienkowska JR, Krzywkowski P, Poreba E.
    Plant Cell Physiol; 2013 Jul 14; 54(7):1064-78. PubMed ID: 23620482
    [Abstract] [Full Text] [Related]

  • 29. Remarkable diversification of bacterial azoreductases: primary sequences, structures, substrates, physiological roles, and biotechnological applications.
    Suzuki H.
    Appl Microbiol Biotechnol; 2019 May 14; 103(10):3965-3978. PubMed ID: 30941462
    [Abstract] [Full Text] [Related]

  • 30. A novel autolysis system for extracellular production and direct immobilization of a phospholipase D fused with cellulose binding domain.
    Zhang H, Chu W, Sun J, Liu Z, Huang WC, Xue C, Mao X.
    BMC Biotechnol; 2019 May 22; 19(1):29. PubMed ID: 31118018
    [Abstract] [Full Text] [Related]

  • 31. Characterization of intracellular deoxyribonucleases of Bacillus subtilis by SDS-polyacrylamide gel electrophoresis.
    Rama JM, Pérez Ureña MT, López P, Espinosa M.
    Microbios; 1987 May 22; 49(200-201):199-212. PubMed ID: 3108630
    [Abstract] [Full Text] [Related]

  • 32. Microbial mannanases: an overview of production and applications.
    Dhawan S, Kaur J.
    Crit Rev Biotechnol; 2007 May 22; 27(4):197-216. PubMed ID: 18085462
    [Abstract] [Full Text] [Related]

  • 33. Chemical rescue of active site mutants of S. pneumoniae surface endonuclease EndA and other nucleases of the HNH family by imidazole.
    Midon M, Gimadutdinow O, Meiss G, Friedhoff P, Pingoud A.
    Chembiochem; 2012 Mar 19; 13(5):713-21. PubMed ID: 22344704
    [Abstract] [Full Text] [Related]

  • 34. Real-time monitoring of enzymatic cleavage of nucleic acids using a quartz crystal microbalance.
    Wang J, Jiang M, Palecek E.
    Bioelectrochem Bioenerg; 1999 May 19; 48(2):477-80. PubMed ID: 10379571
    [Abstract] [Full Text] [Related]

  • 35. From cisplatin to artificial nucleases--the role of metal ion-nucleic acid interactions in biology.
    Lippert B.
    Biometals; 1992 May 19; 5(4):195-208. PubMed ID: 1463927
    [Abstract] [Full Text] [Related]

  • 36. Rational Design and Experimental Analysis of Short-Oligonucleotide Substrate Specificity for Targeting Bacterial Nucleases.
    Jiménez T, Botero J, Otaegui D, Calvo J, Hernandez FJ, San Sebastian E.
    J Med Chem; 2021 Sep 09; 64(17):12855-12864. PubMed ID: 34460263
    [Abstract] [Full Text] [Related]

  • 37. Catalytic hydrolysis of DNA by metal ions and complexes.
    Sreedhara A, Cowan JA.
    J Biol Inorg Chem; 2001 Apr 09; 6(4):337-47. PubMed ID: 11372193
    [Abstract] [Full Text] [Related]

  • 38. A distant evolutionary relationship between GPI-specific phospholipase D and bacterial phosphatidylcholine-preferring phospholipase C.
    Rigden DJ.
    FEBS Lett; 2004 Jul 02; 569(1-3):229-34. PubMed ID: 15225639
    [Abstract] [Full Text] [Related]

  • 39. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases.
    Donati E, Genna V, De Vivo M.
    J Am Chem Soc; 2020 Feb 12; 142(6):2823-2834. PubMed ID: 31939291
    [Abstract] [Full Text] [Related]

  • 40. Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member.
    Rudolph AE, Stuckey JA, Zhao Y, Matthews HR, Patton WA, Moss J, Dixon JE.
    J Biol Chem; 1999 Apr 23; 274(17):11824-31. PubMed ID: 10207000
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.