These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Improved image quality of low-dose CT combining with iterative model reconstruction algorithm for response assessment in patients after treatment of malignant tumor. Xin X, Shen J, Yang S, Liu S, Hu A, Zhu B, Jiang Y, Li B, Zhang B. Quant Imaging Med Surg; 2018 Aug; 8(7):648-657. PubMed ID: 30211032 [Abstract] [Full Text] [Related]
43. Impact of advanced modeled iterative reconstruction on interreader agreement in coronary artery measurements. Gassenmaier T, Distelmaier I, Weng AM, Bley TA, Klink T. Eur J Radiol; 2017 Sep; 94():201-208. PubMed ID: 28712701 [Abstract] [Full Text] [Related]
44. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT. Lee KB, Goo HW. Korean J Radiol; 2018 Sep; 19(1):119-129. PubMed ID: 29354008 [Abstract] [Full Text] [Related]
45. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging. Lauzier PT, Tang J, Speidel MA, Chen GH. Med Phys; 2012 Jul; 39(7):4079-92. PubMed ID: 22830741 [Abstract] [Full Text] [Related]
46. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection. Noda Y, Kaga T, Kawai N, Miyoshi T, Kawada H, Hyodo F, Kambadakone A, Matsuo M. Br J Radiol; 2021 May 01; 94(1121):20201329. PubMed ID: 33571010 [Abstract] [Full Text] [Related]
47. Observer performance for adaptive, image-based denoising and filtered back projection compared to scanner-based iterative reconstruction for lower dose CT enterography. Fletcher JG, Hara AK, Fidler JL, Silva AC, Barlow JM, Carter RE, Bartley A, Shiung M, Holmes DR, Weber NK, Bruining DH, Yu L, McCollough CH. Abdom Imaging; 2015 Jun 01; 40(5):1050-9. PubMed ID: 25725794 [Abstract] [Full Text] [Related]
48. Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH, Blake MA. Radiology; 2010 Nov 01; 257(2):373-83. PubMed ID: 20829535 [Abstract] [Full Text] [Related]
50. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v. Lim K, Kwon H, Cho J, Oh J, Yoon S, Kang M, Ha D, Lee J, Kang E. J Comput Assist Tomogr; 2015 Nov 01; 39(3):443-8. PubMed ID: 25654782 [Abstract] [Full Text] [Related]
51. Pediatric head computed tomography with advanced modeled iterative reconstruction: focus on image quality and reduction of radiation dose. Cho HH, Lee SM, You SK. Pediatr Radiol; 2020 Feb 01; 50(2):242-251. PubMed ID: 31630218 [Abstract] [Full Text] [Related]
52. Characterization of a commercial hybrid iterative and model-based reconstruction algorithm in radiation oncology. Price RG, Vance S, Cattaneo R, Schultz L, Elshaikh MA, Chetty IJ, Glide-Hurst CK. Med Phys; 2014 Aug 01; 41(8):081907. PubMed ID: 25086538 [Abstract] [Full Text] [Related]
53. Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: Comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Masuda S, Yamada Y, Minamishima K, Owaki Y, Yamazaki A, Jinzaki M. Eur J Radiol; 2022 Apr 01; 149():110198. PubMed ID: 35168172 [Abstract] [Full Text] [Related]
54. Intraindividual comparison of diagnostic performance in patients with hepatic metastasis of full-dose standard and half-dose iterative reconstructions with dual-source abdominal computed tomography. Park M, Chung YE, Lee HS, Choi JY, Park MS, Kim MJ, Kim KW. Invest Radiol; 2014 Apr 01; 49(4):195-200. PubMed ID: 24300843 [Abstract] [Full Text] [Related]
55. Can sinogram-affirmed iterative (SAFIRE) reconstruction improve imaging quality on low-dose lung CT screening compared with traditional filtered back projection (FBP) reconstruction? Yang WJ, Yan FH, Liu B, Pang LF, Hou L, Zhang H, Pan ZL, Chen KM. J Comput Assist Tomogr; 2013 Apr 01; 37(2):301-5. PubMed ID: 23493224 [Abstract] [Full Text] [Related]
56. The potential for reduced radiation dose from deep learning-based CT image reconstruction: A comparison with filtered back projection and hybrid iterative reconstruction using a phantom. Lee JE, Choi SY, Hwang JA, Lim S, Lee MH, Yi BH, Cha JG. Medicine (Baltimore); 2021 May 14; 100(19):e25814. PubMed ID: 34106619 [Abstract] [Full Text] [Related]
57. "Image quality evaluation of the Precise image CT deep learning reconstruction algorithm compared to Filtered Back-projection and iDose4: a phantom study at different dose levels". Barca P, Domenichelli S, Golfieri R, Pierotti L, Spagnoli L, Tomasi S, Strigari L. Phys Med; 2023 Feb 14; 106():102517. PubMed ID: 36669326 [Abstract] [Full Text] [Related]