These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
444 related items for PubMed ID: 32097828
1. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation. Zhou N, Dong L, Dixon S. Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828 [Abstract] [Full Text] [Related]
2. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing. Imsiecke M, Krüger B, Büchner A, Lenarz T, Nogueira W. Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567 [Abstract] [Full Text] [Related]
3. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB, Riss D, Liepins R, Rader T, Keck T, Keintzel T, Kaider A, Baumgartner WD, Gstoettner W, Arnoldner C. Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [Abstract] [Full Text] [Related]
4. Improving speech perception in noise with current focusing in cochlear implant users. Srinivasan AG, Padilla M, Shannon RV, Landsberger DM. Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170 [Abstract] [Full Text] [Related]
5. Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe. Bingabr MG, Espinoza-Varas B, Sigdel S. Cochlear Implants Int; 2014 May; 15(3):166-72. PubMed ID: 24606491 [Abstract] [Full Text] [Related]
6. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing. Imsiecke M, Büchner A, Lenarz T, Nogueira W. Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220 [Abstract] [Full Text] [Related]
7. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition. Theelen-van den Hoek FL, Boymans M, van Dijk B, Dreschler WA. Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758 [Abstract] [Full Text] [Related]
8. Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users. Nelson DA, Kreft HA, Anderson ES, Donaldson GS. J Acoust Soc Am; 2011 Jun; 129(6):3916-33. PubMed ID: 21682414 [Abstract] [Full Text] [Related]
9. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing. Krüger B, Büchner A, Nogueira W. Hear Res; 2017 Sep; 353():185-196. PubMed ID: 28688755 [Abstract] [Full Text] [Related]
10. The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users. Lamping W, Goehring T, Marozeau J, Carlyon RP. Hear Res; 2020 Jun; 391():107969. PubMed ID: 32320925 [Abstract] [Full Text] [Related]
11. Place specificity measured in forward and interleaved masking in cochlear implants. Azadpour M, AlJasser A, McKay CM. J Acoust Soc Am; 2013 Oct; 134(4):EL314-20. PubMed ID: 24116536 [Abstract] [Full Text] [Related]
12. Effect of pulse phase duration on forward masking and spread of excitation in cochlear implant listeners. Zhou N, Zhu Z, Dong L, Galvin JJ. PLoS One; 2020 Oct; 15(7):e0236179. PubMed ID: 32687516 [Abstract] [Full Text] [Related]
13. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L, Hohmann V, Büchner A, Schädler MR, Jürgens T. Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [Abstract] [Full Text] [Related]
14. Modulation detection interference in cochlear implant listeners under forward masking conditions. Chatterjee M, Kulkarni AM. J Acoust Soc Am; 2018 Feb; 143(2):1117. PubMed ID: 29495705 [Abstract] [Full Text] [Related]
15. A directional remote-microphone for bimodal cochlear implant recipients. Vroegop JL, Homans NC, Goedegebure A, van der Schroeff MP. Int J Audiol; 2018 Nov; 57(11):858-863. PubMed ID: 30261771 [Abstract] [Full Text] [Related]
16. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users. Bonnard D, Schwalje A, Gantz B, Choi I. Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380 [Abstract] [Full Text] [Related]
17. Reduction in spread of excitation from current focusing at multiple cochlear locations in cochlear implant users. Padilla M, Landsberger DM. Hear Res; 2016 Mar; 333():98-107. PubMed ID: 26778546 [Abstract] [Full Text] [Related]
18. Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants. Undurraga JA, Carlyon RP, Macherey O, Wouters J, van Wieringen A. Hear Res; 2012 Aug; 290(1-2):21-36. PubMed ID: 22583921 [Abstract] [Full Text] [Related]
19. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise. Mc Laughlin M, Reilly RB, Zeng FG. J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025 [Abstract] [Full Text] [Related]
20. Lexical tone recognition in noise in normal-hearing children and prelingually deafened children with cochlear implants. Mao Y, Xu L. Int J Audiol; 2017 Mar; 56(sup2):S23-S30. PubMed ID: 27564095 [Abstract] [Full Text] [Related] Page: [Next] [New Search]