These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


275 related items for PubMed ID: 32102358

  • 41. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression.
    Fu P, Meacham-Hensold K, Guan K, Wu J, Bernacchi C.
    Plant Cell Environ; 2020 May; 43(5):1241-1258. PubMed ID: 31922609
    [Abstract] [Full Text] [Related]

  • 42. [Wheat leaf area index inversion using hyperspectral remote sensing technology].
    Liang L, Yang MH, Zhang LP, Lin H.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1658-62. PubMed ID: 21847953
    [Abstract] [Full Text] [Related]

  • 43. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N, Zhou J, Han Z, Li D, Cao Q, Yao X, Tian Y, Zhu Y, Cao W, Cheng T.
    Plant Methods; 2019 Jun; 15():17. PubMed ID: 30828356
    [Abstract] [Full Text] [Related]

  • 44. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions.
    El-Hendawy S, Al-Suhaibani N, Elsayed S, Alotaibi M, Hassan W, Schmidhalter U.
    Plant Physiol Biochem; 2019 Nov; 144():300-311. PubMed ID: 31605962
    [Abstract] [Full Text] [Related]

  • 45. Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress.
    Zhang L, Yuan D, Fan Y, Yang R.
    Sensors (Basel); 2024 Jul 23; 24(15):. PubMed ID: 39123823
    [Abstract] [Full Text] [Related]

  • 46. [Estimation of Winter Wheat Biomass Using Visible Spectral and BP Based Artificial Neural Networks].
    Cui RX, Liu YD, Fu JD.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep 23; 35(9):2596-601. PubMed ID: 26669174
    [Abstract] [Full Text] [Related]

  • 47. Potential of Multivariate Statistical Technique Based on the Effective Spectra Bands to Estimate the Plant Water Content of Wheat Under Different Irrigation Regimes.
    Sun H, Feng M, Xiao L, Yang W, Ding G, Wang C, Jia X, Wu G, Zhang S.
    Front Plant Sci; 2021 Sep 23; 12():631573. PubMed ID: 33719305
    [Abstract] [Full Text] [Related]

  • 48. Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
    Murakami K, Shimoda S, Kominami Y, Nemoto M, Inoue S.
    PLoS One; 2021 Sep 23; 16(10):e0258677. PubMed ID: 34662365
    [Abstract] [Full Text] [Related]

  • 49. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley.
    Rueda-Ayala VP, Peña JM, Höglind M, Bengochea-Guevara JM, Andújar D.
    Sensors (Basel); 2019 Jan 28; 19(3):. PubMed ID: 30696014
    [Abstract] [Full Text] [Related]

  • 50. [Winter wheat growth spatial variation study based on temporal airborne high-spectrum images].
    Song XY, Wang JH, Yan GJ, Huang WJ, Liu LY.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul 28; 30(7):1820-4. PubMed ID: 20827978
    [Abstract] [Full Text] [Related]

  • 51. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning.
    Feng ZH, Wang LY, Yang ZQ, Zhang YY, Li X, Song L, He L, Duan JZ, Feng W.
    Front Plant Sci; 2022 Jul 28; 13():828454. PubMed ID: 35386677
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery.
    Yang B, Ma J, Yao X, Cao W, Zhu Y.
    Sensors (Basel); 2021 Jan 17; 21(2):. PubMed ID: 33477350
    [Abstract] [Full Text] [Related]

  • 55. Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat.
    Huang W, Yang Q, Pu R, Yang S.
    Sensors (Basel); 2014 Oct 28; 14(11):20347-59. PubMed ID: 25353983
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. A novel approach for nitrogen diagnosis of wheat canopies digital images by mobile phones based on histogram.
    Qi X, Zhao Y, Huang Y, Wang Y, Qin W, Fu W, Guo Y, Ye Y.
    Sci Rep; 2021 Jun 21; 11(1):13012. PubMed ID: 34155294
    [Abstract] [Full Text] [Related]

  • 59. [Retrieval of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression].
    Wang YY, Li GC, Zhang LJ, Fan JL.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr 21; 30(4):1070-4. PubMed ID: 20545164
    [Abstract] [Full Text] [Related]

  • 60. [Prediction of winter wheat yield based on crop biomass estimation at regional scale].
    Ren JQ, Liu XR, Chen ZX, Zhou QB, Tang HJ.
    Ying Yong Sheng Tai Xue Bao; 2009 Apr 21; 20(4):872-8. PubMed ID: 19565769
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.