These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 32103473

  • 1. Covalent Immobilization of Candida rugosa Lipase on Epichlorohydrin-Coated Magnetite Nanoparticles: Enantioselective Hydrolysis Studies of Some Racemic Esters and HPLC Analysis.
    Çakmak R, Topal G, Çınar E.
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1411-1431. PubMed ID: 32103473
    [Abstract] [Full Text] [Related]

  • 2. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution.
    Ozyilmaz E, Ascioglu S, Yilmaz M.
    Int J Biol Macromol; 2021 Apr 01; 175():79-86. PubMed ID: 33548316
    [Abstract] [Full Text] [Related]

  • 3. Immobilization of Candida rugosa lipase for resolution of racimic ibuprofen.
    Ghofrani S, Allameh A, Yaghmaei P, Norouzian D.
    Daru; 2021 Jun 01; 29(1):117-123. PubMed ID: 33528796
    [Abstract] [Full Text] [Related]

  • 4. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.
    Sayin S, Akoz E, Yilmaz M.
    Org Biomol Chem; 2014 Sep 14; 12(34):6634-42. PubMed ID: 25012138
    [Abstract] [Full Text] [Related]

  • 5. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters.
    Ozyilmaz E, Etci K, Sezgin M.
    Prep Biochem Biotechnol; 2018 Sep 14; 48(10):887-897. PubMed ID: 30296382
    [Abstract] [Full Text] [Related]

  • 6. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester.
    Akoz E, Akbulut OY, Yilmaz M.
    Appl Biochem Biotechnol; 2014 Jan 14; 172(1):509-23. PubMed ID: 24092454
    [Abstract] [Full Text] [Related]

  • 7. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester.
    Yilmaz E, Can K, Sezgin M, Yilmaz M.
    Bioresour Technol; 2011 Jan 14; 102(2):499-506. PubMed ID: 20846857
    [Abstract] [Full Text] [Related]

  • 8. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.
    Wang J, Meng G, Tao K, Feng M, Zhao X, Li Z, Xu H, Xia D, Lu JR.
    PLoS One; 2012 Jan 14; 7(8):e43478. PubMed ID: 22952688
    [Abstract] [Full Text] [Related]

  • 9. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis.
    Romero CM, Spuches FC, Morales AH, Perotti NI, Navarro MC, Gómez MI.
    Colloids Surf B Biointerfaces; 2018 Dec 01; 172():699-707. PubMed ID: 30245295
    [Abstract] [Full Text] [Related]

  • 10. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer.
    Yilmaz E, Sezgin M.
    Appl Biochem Biotechnol; 2012 Apr 01; 166(8):1927-40. PubMed ID: 22383051
    [Abstract] [Full Text] [Related]

  • 11. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.
    Hou C, Qi Z, Zhu H.
    Colloids Surf B Biointerfaces; 2015 Apr 01; 128():544-551. PubMed ID: 25784302
    [Abstract] [Full Text] [Related]

  • 12. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles.
    Ozyilmaz E, Bayrakci M, Yilmaz M.
    Bioorg Chem; 2016 Apr 01; 65():1-8. PubMed ID: 26698535
    [Abstract] [Full Text] [Related]

  • 13. Evaluation of Candida rugosa Lipase Immobilized on Magnetic Nanoparticles in Enzymatic/Chemical Hydroesterification for Biodiesel Production.
    Domingues O, Remonatto D, Dos Santos LK, Galán JPM, Flumignan DL, de Paula AV.
    Appl Biochem Biotechnol; 2022 Nov 01; 194(11):5419-5442. PubMed ID: 35789983
    [Abstract] [Full Text] [Related]

  • 14. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester.
    Zhu S, Wu Y, Yu Z.
    J Biotechnol; 2005 Apr 06; 116(4):397-401. PubMed ID: 15748766
    [Abstract] [Full Text] [Related]

  • 15. Encapsulation of lipase using magnetic fluorescent calix[4]arene derivatives; improvement of enzyme activity and stability.
    Ozyilmaz E, Cetinguney S, Yilmaz M.
    Int J Biol Macromol; 2019 Jul 15; 133():1042-1050. PubMed ID: 31042560
    [Abstract] [Full Text] [Related]

  • 16. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application.
    Asmat S, Husain Q.
    Mater Sci Eng C Mater Biol Appl; 2019 Jun 15; 99():25-36. PubMed ID: 30889698
    [Abstract] [Full Text] [Related]

  • 17. Preparation of (S)-2-Phenylpropionic Acid by CaCl₂/CMC Nanoparticles Immobilized Candida rugosa Lipase-Catalyzed Hydrolysis in Micro Aqueous Mixed Organic Solvent Systems.
    Liu X, He D, Li X, Deng Y, Deng J, Li D, Ma L.
    J Nanosci Nanotechnol; 2020 Mar 01; 20(3):1899-1906. PubMed ID: 31492359
    [Abstract] [Full Text] [Related]

  • 18. Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on amino-functionalized magnetic nanoparticles.
    Pashangeh K, Akhond M, Karbalaei-Heidari HR, Absalan G.
    Int J Biol Macromol; 2017 Dec 01; 105(Pt 1):300-307. PubMed ID: 28711611
    [Abstract] [Full Text] [Related]

  • 19. Surface Modification of Fe(3)O(4)@SiO(2) Magnetic Nanoparticles for Immobilization of Lipase.
    Xia GH, Liu W, Jiang XP, Wang XY, Zhang YW, Guo J.
    J Nanosci Nanotechnol; 2017 Jan 01; 17(1):370-6. PubMed ID: 29620837
    [Abstract] [Full Text] [Related]

  • 20. Covalent immobilization of lipase from Candida rugosa on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel.
    Aghaei H, Yasinian A, Taghizadeh A.
    Int J Biol Macromol; 2021 May 01; 178():569-579. PubMed ID: 33667558
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.