These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 32111754

  • 41. Multinucleated giant cells within the in vivo implantation bed of a collagen-based biomaterial determine its degradation pattern.
    Tanneberger AM, Al-Maawi S, Herrera-Vizcaíno C, Orlowska A, Kubesch A, Sader R, Kirkpatrick CJ, Ghanaati S.
    Clin Oral Investig; 2021 Mar; 25(3):859-873. PubMed ID: 32514904
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Hydroxyapatite Nanoparticles as Injectable Bone Substitute Material in a Vertical Bone Augmentation Model.
    Kaneko A, Marukawa E, Harada H.
    In Vivo; 2020 Mar; 34(3):1053-1061. PubMed ID: 32354892
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. IN VIVO PERFORMANCE OF THE EXPERIMENTAL CHITOSAN BASED BONE SUBSTITUTE--ADVANCED THERAPY MEDICINAL PRODUCT. A STUDY IN SHEEP.
    Bojar W, Kucharska M, Ciach T, Paśnik I, Korobowicz E, Patkowski K, Gruszecki T, Szymanowski M, Rzodkiewicz P.
    Acta Pol Pharm; 2016 Mar; 73(1):209-17. PubMed ID: 27008815
    [Abstract] [Full Text] [Related]

  • 47. Bone healing following the use of hydroxyapatite or ionomeric bone substitutes alone or combined with a guided bone regeneration technique: an animal study.
    Salata LA, Craig GT, Brook IM.
    Int J Oral Maxillofac Implants; 1998 Mar; 13(1):44-51. PubMed ID: 9509779
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Porcine Dermis-Derived Collagen Membranes Induce Implantation Bed Vascularization Via Multinucleated Giant Cells: A Physiological Reaction?
    Barbeck M, Lorenz J, Kubesch A, Böhm N, Booms P, Choukroun J, Sader R, Kirkpatrick CJ, Ghanaati S.
    J Oral Implantol; 2015 Dec; 41(6):e238-51. PubMed ID: 25546240
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity.
    Dahlin C, Obrecht M, Dard M, Donos N.
    Clin Oral Implants Res; 2015 Jul; 26(7):814-22. PubMed ID: 24593049
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization.
    Laschke MW, Witt K, Pohlemann T, Menger MD.
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):494-505. PubMed ID: 17279565
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Bone regeneration strategy by different sized multichanneled biphasic calcium phosphate granules: In vivo evaluation in rabbit model.
    Taz M, Bae SH, Jung HI, Cho HD, Lee BT.
    J Biomater Appl; 2018 May; 32(10):1406-1420. PubMed ID: 29642751
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.
    Sadiasa A, Sarkar SK, Franco RA, Min YK, Lee BT.
    J Biomater Appl; 2014 Jan; 28(5):739-56. PubMed ID: 23470354
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.