These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 32120149
1. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution. Ma X, Yao S, Yuan Z, Bi R, Wu X, Zhang J, Wang S, Wang X, Jia Y. Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149 [Abstract] [Full Text] [Related]
2. Alternative Method for the Treatment of Hydrometallurgical Arsenic-Calcium Residues: The Immobilization of Arsenic as Scorodite. Ma X, Yuan Z, Zhang G, Zhang J, Wang X, Wang S, Jia Y. ACS Omega; 2020 Jun 09; 5(22):12979-12988. PubMed ID: 32548482 [Abstract] [Full Text] [Related]
3. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry. Zhang D, Yuan Z, Wang S, Jia Y, Demopoulos GP. J Hazard Mater; 2015 Dec 30; 300():272-280. PubMed ID: 26188870 [Abstract] [Full Text] [Related]
4. Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species. Liu W, Zheng J, Ou X, Liu X, Song Y, Tian C, Rong W, Shi Z, Dang Z, Lin Z. Environ Sci Technol; 2018 Nov 20; 52(22):13336-13342. PubMed ID: 30353724 [Abstract] [Full Text] [Related]
5. Reclamation of an arsenic-bearing gypsum via acid washing and CaO-As stabilization involving svabite formation in thermal treatment. Yang D, Sasaki A, Endo M. J Environ Manage; 2019 Feb 01; 231():811-818. PubMed ID: 30419436 [Abstract] [Full Text] [Related]
6. Chromium removal from chromium gypsum through microwave hydrothermal crystal phase regulation. Liao C, Li X, Li J, Zheng J, Weng C, Liu W, Lin Z. Environ Sci Pollut Res Int; 2023 Oct 01; 30(47):104544-104553. PubMed ID: 37704811 [Abstract] [Full Text] [Related]
7. Efficient removal of iron from red gypsum via synergistic regulation of gypsum phase transformation and iron speciation. Peng X, Zheng J, Liu Q, Hu Q, Sun X, Li J, Liu W, Lin Z. Sci Total Environ; 2021 Oct 15; 791():148319. PubMed ID: 34412386 [Abstract] [Full Text] [Related]
8. Enhanced extraction of heavy metals from gypsum-based hazardous waste by nanoscale sulfuric acid film at ambient conditions. Li W, Wang C, Che G, Su M, Zhang Z, Liu W, Lin Z, Zhang J. J Hazard Mater; 2024 May 05; 469():134027. PubMed ID: 38508110 [Abstract] [Full Text] [Related]
10. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution. Jia C, Wu L, Chen Q, Lin J, Yang L, Song Z, Guan B. Chemosphere; 2020 Sep 05; 255():126936. PubMed ID: 32417511 [Abstract] [Full Text] [Related]
11. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum. Sun X, Mao M, Lu K, Hu Q, Liu W, Lin Z. J Hazard Mater; 2022 Feb 15; 424(Pt C):127585. PubMed ID: 34753651 [Abstract] [Full Text] [Related]
12. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Liu DG, Min XB, Ke Y, Chai LY, Liang YJ, Li YC, Yao LW, Wang ZB. Environ Sci Pollut Res Int; 2018 Mar 15; 25(8):7600-7607. PubMed ID: 29282669 [Abstract] [Full Text] [Related]
13. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge. Yong Y, Yongkui L, Jianhang H, Dapeng Z, Hua W. Chemosphere; 2022 Jun 15; 296():134078. PubMed ID: 35202660 [Abstract] [Full Text] [Related]
14. Modification of FGD gypsum in hydrothermal mixed salt solution. Wu XQ, Wu ZB. J Environ Sci (China); 2006 Jun 15; 18(1):170-5. PubMed ID: 20050568 [Abstract] [Full Text] [Related]
15. Arsenate incorporation in gypsum probed by neutron, X-ray scattering and density functional theory modeling. Fernández-Martínez A, Cuello GJ, Johnson MR, Bardelli F, Román-Ross G, Charlet L, Turrillas X. J Phys Chem A; 2008 Jun 12; 112(23):5159-66. PubMed ID: 18491845 [Abstract] [Full Text] [Related]
16. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues. Sethurajan M, Huguenot D, Lens PN, Horn HA, Figueiredo LH, van Hullebusch ED. J Environ Manage; 2016 Jul 15; 177():26-35. PubMed ID: 27074201 [Abstract] [Full Text] [Related]
17. Effect of the addition of industrial by-products on Cu, Zn, Pb and As leachability in a mine sediment. Rodríguez-Jordá MP, Garrido F, García-González MT. J Hazard Mater; 2012 Apr 30; 213-214():46-54. PubMed ID: 22341746 [Abstract] [Full Text] [Related]
18. Efficient Removal of Heavy Metals from Contaminated Sunflower Straw by an Acid-Assisted Hydrothermal Process. Song H, Zhou J, He S, Ma Q, Peng L, Yin M, Lin H, Zeng Q. Int J Environ Res Public Health; 2023 Jan 11; 20(2):. PubMed ID: 36674067 [Abstract] [Full Text] [Related]
19. A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil. Kim HS, Seo BH, Kuppusamy S, Lee YB, Lee JH, Yang JE, Owens G, Kim KR. Ecotoxicol Environ Saf; 2018 Feb 11; 148():615-619. PubMed ID: 29128822 [Abstract] [Full Text] [Related]
20. Retention of trace metals by solidified/stabilized wastes: assessment of long-term metal release. Badreddine R, Humez AN, Mingelgrin U, Benchara A, Meducin F, Prost R. Environ Sci Technol; 2004 Mar 01; 38(5):1383-98. PubMed ID: 15046339 [Abstract] [Full Text] [Related] Page: [Next] [New Search]