These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 32133852

  • 1. Efficient Degradation of Phenoxyalkanoic Acid Herbicides by the Alkali-Tolerant Cupriavidus oxalaticus Strain X32.
    Xiang S, Lin R, Shang H, Xu Y, Zhang Z, Wu X, Zong F.
    J Agric Food Chem; 2020 Mar 25; 68(12):3786-3795. PubMed ID: 32133852
    [Abstract] [Full Text] [Related]

  • 2. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
    Wu X, Wang W, Liu J, Pan D, Tu X, Lv P, Wang Y, Cao H, Wang Y, Hua R.
    J Agric Food Chem; 2017 May 10; 65(18):3711-3720. PubMed ID: 28434228
    [Abstract] [Full Text] [Related]

  • 3. Cupriavidus pinatubonensis AEO106 deals with copper-induced oxidative stress before engaging in biodegradation of the herbicide 4-chloro-2-methylphenoxyacetic acid.
    Svenningsen NB, Damgaard M, Rasmussen M, Pérez-Pantoja D, Nybroe O, Nicolaisen MH.
    BMC Microbiol; 2017 Oct 30; 17(1):211. PubMed ID: 29084513
    [Abstract] [Full Text] [Related]

  • 4. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35.
    Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD.
    Curr Microbiol; 2017 Feb 30; 74(2):193-202. PubMed ID: 27933337
    [Abstract] [Full Text] [Related]

  • 5. Bio-Augmentation of Cupriavidus sp. CY-1 into 2,4-D Contaminated Soil: Microbial Community Analysis by Culture Dependent and Independent Techniques.
    Chang YC, Reddy MV, Umemoto H, Sato Y, Kang MH, Yajima Y, Kikuchi S.
    PLoS One; 2015 Feb 30; 10(12):e0145057. PubMed ID: 26710231
    [Abstract] [Full Text] [Related]

  • 6. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders.
    Liu YJ, Zaprasis A, Liu SJ, Drake HL, Horn MA.
    ISME J; 2011 Mar 30; 5(3):473-85. PubMed ID: 20740027
    [Abstract] [Full Text] [Related]

  • 7. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation.
    Ledger T, Pieper DH, González B.
    Appl Environ Microbiol; 2006 Apr 30; 72(4):2783-92. PubMed ID: 16597983
    [Abstract] [Full Text] [Related]

  • 8. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.
    Onneby K, Jonsson A, Stenström J.
    Biodegradation; 2010 Feb 30; 21(1):21-9. PubMed ID: 19557524
    [Abstract] [Full Text] [Related]

  • 9. The efficient persistence and migration of Cupriavidus gilardii T1 contribute to the removal of MCPA in laboratory and field soils.
    Pan D, Xu Y, Ni Y, Zhang H, Hua R, Wu X.
    Environ Pollut; 2022 Jul 01; 304():119220. PubMed ID: 35358633
    [Abstract] [Full Text] [Related]

  • 10. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils.
    Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL.
    Environ Health Perspect; 2002 Dec 01; 110 Suppl 6(Suppl 6):943-6. PubMed ID: 12634123
    [Abstract] [Full Text] [Related]

  • 11. A study of the degradation of phenoxyacid herbicides at different sites in a limestone aquifer.
    Harrison I, Leader RU, Higgo JJ, Williams GM.
    Chemosphere; 1998 Mar 01; 36(6):1211-32. PubMed ID: 9493323
    [Abstract] [Full Text] [Related]

  • 12. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil.
    Nicolaisen MH, Baelum J, Jacobsen CS, Sørensen J.
    Environ Microbiol; 2008 Mar 01; 10(3):571-9. PubMed ID: 18190516
    [Abstract] [Full Text] [Related]

  • 13. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71.
    Han L, Zhao D, Li C.
    Braz J Microbiol; 2015 Jun 01; 46(2):433-41. PubMed ID: 26273258
    [Abstract] [Full Text] [Related]

  • 14. Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid.
    Smejkal CW, Seymour FA, Burton SK, Lappin-Scott HM.
    J Ind Microbiol Biotechnol; 2003 Sep 01; 30(9):561-7. PubMed ID: 14513383
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas.
    Nielsen TK, Xu Z, Gözdereliler E, Aamand J, Hansen LH, Sørensen SR.
    PLoS One; 2013 Sep 01; 8(12):e83346. PubMed ID: 24391756
    [Abstract] [Full Text] [Related]

  • 18. Study of the degradation of the herbicides 2,4-D and MCPA at different depths in contaminated agricultural soil.
    Crespin MA, Gallego M, Valcárcel M, González JL.
    Environ Sci Technol; 2001 Nov 01; 35(21):4265-70. PubMed ID: 11718340
    [Abstract] [Full Text] [Related]

  • 19. Biodegradation of the phenoxy herbicide MCPA by microbial consortia isolated from a rice field.
    Oh KH, Ahn SK, Yoon KH, Kim YS.
    Bull Environ Contam Toxicol; 1995 Oct 01; 55(4):539-45. PubMed ID: 8555678
    [No Abstract] [Full Text] [Related]

  • 20. Loss of enhanced biodegradation of 2,4-D and MCPA in a field soil following cessation of repeated herbicide applications.
    Smith AE, Aubin AJ.
    Bull Environ Contam Toxicol; 1994 Jul 01; 53(1):7-11. PubMed ID: 8069077
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.