These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


524 related items for PubMed ID: 32135259

  • 1. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN, Rehman N, Sharif A, Ahmed E, Farooqi ZH, Din MI.
    Int J Biol Macromol; 2020 Jun 15; 153():72-78. PubMed ID: 32135259
    [Abstract] [Full Text] [Related]

  • 2. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber.
    Rasheed M, Jawaid M, Karim Z, Abdullah LC.
    Molecules; 2020 Jun 18; 25(12):. PubMed ID: 32570929
    [Abstract] [Full Text] [Related]

  • 3. Isolation and characterization of microcrystalline cellulose from roselle fibers.
    Kian LK, Jawaid M, Ariffin H, Alothman OY.
    Int J Biol Macromol; 2017 Oct 18; 103():931-940. PubMed ID: 28549863
    [Abstract] [Full Text] [Related]

  • 4. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide.
    Ventura-Cruz S, Flores-Alamo N, Tecante A.
    Int J Biol Macromol; 2020 Jul 15; 155():324-329. PubMed ID: 32234444
    [Abstract] [Full Text] [Related]

  • 5. Production and Characterization of Nanocellulose from Maguey (Agave cantala) Fiber.
    Sumarago EC, Dela Cerna MFM, Leyson AKB, Tan NPB, Magsico KF.
    Polymers (Basel); 2024 May 07; 16(10):. PubMed ID: 38794505
    [Abstract] [Full Text] [Related]

  • 6. Cellulose nanocrystals from Siam weed: Synthesis and physicochemical characterization.
    Ogunjobi JK, Adewale AI, Adeyemi SA.
    Heliyon; 2023 Jan 07; 9(1):e13104. PubMed ID: 36747922
    [Abstract] [Full Text] [Related]

  • 7. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials.
    Pereira PHF, Ornaghi HL, Arantes V, Cioffi MOH.
    Carbohydr Res; 2021 Jan 07; 499():108227. PubMed ID: 33388571
    [Abstract] [Full Text] [Related]

  • 8. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW, Lee HV.
    Int J Biol Macromol; 2018 Feb 07; 107(Pt A):78-92. PubMed ID: 28860064
    [Abstract] [Full Text] [Related]

  • 9. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.
    Chen YW, Lee HV, Juan JC, Phang SM.
    Carbohydr Polym; 2016 Oct 20; 151():1210-1219. PubMed ID: 27474672
    [Abstract] [Full Text] [Related]

  • 10. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment.
    Syafri E, Jamaluddin, Sari NH, Mahardika M, Amanda P, Ilyas RA.
    Int J Biol Macromol; 2022 Mar 01; 200():25-33. PubMed ID: 34971644
    [Abstract] [Full Text] [Related]

  • 11. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem.
    Birlie B, Mamay T.
    Int J Biol Macromol; 2024 Jun 01; 271(Pt 2):132858. PubMed ID: 38845254
    [Abstract] [Full Text] [Related]

  • 12. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue.
    Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M.
    Carbohydr Polym; 2013 Apr 02; 93(2):628-34. PubMed ID: 23499105
    [Abstract] [Full Text] [Related]

  • 13. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T, Anne Christma FL, Toyin AJ, Gopinath SCB, Ravichandran R.
    Int J Biol Macromol; 2018 Apr 01; 109():832-836. PubMed ID: 29133091
    [Abstract] [Full Text] [Related]

  • 14. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose.
    Kian LK, Jawaid M, Ariffin H, Karim Z.
    Int J Biol Macromol; 2018 Jul 15; 114():54-63. PubMed ID: 29551511
    [Abstract] [Full Text] [Related]

  • 15. Characterization of microcrystalline cellulose extracted from olive fiber.
    Kian LK, Saba N, Jawaid M, Fouad H.
    Int J Biol Macromol; 2020 Aug 01; 156():347-353. PubMed ID: 32278601
    [Abstract] [Full Text] [Related]

  • 16. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites.
    Vijayakkannan K, Rajendran I.
    Int J Biol Macromol; 2024 Jun 01; 269(Pt 1):131818. PubMed ID: 38670191
    [Abstract] [Full Text] [Related]

  • 17. Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber.
    Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M.
    Polymers (Basel); 2020 Dec 07; 12(12):. PubMed ID: 33297332
    [Abstract] [Full Text] [Related]

  • 18. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films.
    Barbash VA, Yaschenko OV, Alushkin SV, Kondratyuk AS, Posudievsky OY, Koshechko VG.
    Nanoscale Res Lett; 2016 Dec 07; 11(1):410. PubMed ID: 27644236
    [Abstract] [Full Text] [Related]

  • 19. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW, Hasanulbasori MA, Chiat PF, Lee HV.
    Int J Biol Macromol; 2019 Feb 15; 123():1305-1319. PubMed ID: 30292586
    [Abstract] [Full Text] [Related]

  • 20. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M, Lopes da Silva L, Durán N, Tasic L.
    Molecules; 2015 Apr 03; 20(4):5908-23. PubMed ID: 25854755
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.