These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 32143575

  • 1. Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress.
    Zhou R, Yu X, Ottosen CO, Zhang T, Wu Z, Zhao T.
    BMC Plant Biol; 2020 Mar 06; 20(1):107. PubMed ID: 32143575
    [Abstract] [Full Text] [Related]

  • 2. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes.
    Candar-Cakir B, Arican E, Zhang B.
    Plant Biotechnol J; 2016 Aug 06; 14(8):1727-46. PubMed ID: 26857916
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing.
    Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B.
    BMC Genomics; 2017 Jun 26; 18(1):481. PubMed ID: 28651543
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Physiological analysis and transcriptome sequencing reveal the effects of combined cold and drought on tomato leaf.
    Zhou R, Yu X, Zhao T, Ottosen CO, Rosenqvist E, Wu Z.
    BMC Plant Biol; 2019 Aug 27; 19(1):377. PubMed ID: 31455231
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).
    Li R, Chen D, Wang T, Wan Y, Li R, Fang R, Wang Y, Hu F, Zhou H, Li L, Zhao W.
    PLoS One; 2017 Aug 27; 12(2):e0172883. PubMed ID: 28235056
    [Abstract] [Full Text] [Related]

  • 9. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.
    Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Yu W, Zhao T, Wu Z.
    BMC Plant Biol; 2017 Jan 25; 17(1):24. PubMed ID: 28122507
    [Abstract] [Full Text] [Related]

  • 10. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
    Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M.
    PLoS One; 2012 Jan 25; 7(10):e46703. PubMed ID: 23071617
    [Abstract] [Full Text] [Related]

  • 11. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.
    Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X.
    BMC Genet; 2016 Apr 12; 17():57. PubMed ID: 27068810
    [Abstract] [Full Text] [Related]

  • 12. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants.
    Duc NH, Csintalan Z, Posta K.
    Plant Physiol Biochem; 2018 Nov 12; 132():297-307. PubMed ID: 30245343
    [Abstract] [Full Text] [Related]

  • 13. Identification of drought-responsive microRNAs in tomato using high-throughput sequencing.
    Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B.
    Funct Integr Genomics; 2018 Jan 12; 18(1):67-78. PubMed ID: 28956210
    [Abstract] [Full Text] [Related]

  • 14. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum).
    Shi X, Jiang F, Wen J, Wu Z.
    BMC Plant Biol; 2019 May 23; 19(1):214. PubMed ID: 31122194
    [Abstract] [Full Text] [Related]

  • 15. Effects of drought on the microtranscriptome of field-grown sugarcane plants.
    Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T, Nogueira RM, Endres L, Menossi M.
    Planta; 2013 Mar 23; 237(3):783-98. PubMed ID: 23129215
    [Abstract] [Full Text] [Related]

  • 16. Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars.
    Öztürk Gökçe ZN, Aksoy E, Bakhsh A, Demirel U, Çalışkan S, Çalışkan ME.
    Funct Integr Genomics; 2021 Jul 23; 21(3-4):489-502. PubMed ID: 34241734
    [Abstract] [Full Text] [Related]

  • 17. Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato.
    Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G.
    BMC Genomics; 2017 Nov 02; 18(1):843. PubMed ID: 29096602
    [Abstract] [Full Text] [Related]

  • 18. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z.
    Plant Cell Rep; 2014 Nov 02; 33(11):1851-63. PubMed ID: 25063324
    [Abstract] [Full Text] [Related]

  • 19. MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower.
    Kouhi F, Sorkheh K, Ercisli S.
    PLoS One; 2020 Nov 02; 15(2):e0228850. PubMed ID: 32069300
    [Abstract] [Full Text] [Related]

  • 20. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton.
    Xie F, Wang Q, Sun R, Zhang B.
    J Exp Bot; 2015 Feb 02; 66(3):789-804. PubMed ID: 25371507
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.