These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 32144203
1. Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. Sabrialabed S, Yang JG, Yariv E, Ben-Tal N, Lewinson O. J Biol Chem; 2020 Apr 17; 295(16):5245-5256. PubMed ID: 32144203 [Abstract] [Full Text] [Related]
2. Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli. Chonoles Imlay KR, Korshunov S, Imlay JA. J Bacteriol; 2015 Dec 17; 197(23):3629-44. PubMed ID: 26350134 [Abstract] [Full Text] [Related]
3. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. Ohtsu I, Kawano Y, Suzuki M, Morigasaki S, Saiki K, Yamazaki S, Nonaka G, Takagi H. PLoS One; 2015 Dec 17; 10(3):e0120619. PubMed ID: 25837721 [Abstract] [Full Text] [Related]
4. Combining Mutations That Inhibit Two Distinct Steps of the ATP Hydrolysis Cycle Restores Wild-Type Function in the Lipopolysaccharide Transporter and Shows that ATP Binding Triggers Transport. Simpson BW, Pahil KS, Owens TW, Lundstedt EA, Davis RM, Kahne D, Ruiz N. mBio; 2019 Aug 20; 10(4):. PubMed ID: 31431556 [Abstract] [Full Text] [Related]
5. Structure and function of the bacterial heterodimeric ABC transporter CydDC: stimulation of ATPase activity by thiol and heme compounds. Yamashita M, Shepherd M, Booth WI, Xie H, Postis V, Nyathi Y, Tzokov SB, Poole RK, Baldwin SA, Bullough PA. J Biol Chem; 2014 Aug 15; 289(33):23177-23188. PubMed ID: 24958725 [Abstract] [Full Text] [Related]
6. Molecular mechanism of the Escherichia coli maltose transporter. Chen J. Curr Opin Struct Biol; 2013 Aug 15; 23(4):492-8. PubMed ID: 23628288 [Abstract] [Full Text] [Related]
7. ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking. Hunke S, Mourez M, Jehanno M, Dassa E, Schneider E. J Biol Chem; 2000 May 19; 275(20):15526-34. PubMed ID: 10809785 [Abstract] [Full Text] [Related]
8. Positive co-operative activity and dimerization of the isolated ABC ATPase domain of HlyB from Escherichia coli. Benabdelhak H, Schmitt L, Horn C, Jumel K, Blight MA, Holland IB. Biochem J; 2005 Mar 15; 386(Pt 3):489-95. PubMed ID: 15636583 [Abstract] [Full Text] [Related]
9. ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein. Qasem-Abdullah H, Perach M, Livnat-Levanon N, Lewinson O. J Biol Chem; 2017 Sep 01; 292(35):14617-14624. PubMed ID: 28710276 [Abstract] [Full Text] [Related]
10. A single intact ATPase site of the ABC transporter BtuCD drives 5% transport activity yet supports full in vivo vitamin B12 utilization. Tal N, Ovcharenko E, Lewinson O. Proc Natl Acad Sci U S A; 2013 Apr 02; 110(14):5434-9. PubMed ID: 23513227 [Abstract] [Full Text] [Related]
11. Substrate binding stabilizes a pre-translocation intermediate in the ATP-binding cassette transport protein MsbA. Doshi R, van Veen HW. J Biol Chem; 2013 Jul 26; 288(30):21638-47. PubMed ID: 23766512 [Abstract] [Full Text] [Related]
12. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity. Bao H, Dalal K, Wang V, Rouiller I, Duong F. Biochim Biophys Acta; 2013 Aug 26; 1828(8):1723-30. PubMed ID: 23562402 [Abstract] [Full Text] [Related]
13. Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter. Zaitseva J, Jenewein S, Wiedenmann A, Benabdelhak H, Holland IB, Schmitt L. Biochemistry; 2005 Jul 19; 44(28):9680-90. PubMed ID: 16008353 [Abstract] [Full Text] [Related]
14. Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. Reimann S, Poschmann G, Kanonenberg K, Stühler K, Smits SH, Schmitt L. Biochem J; 2016 Aug 15; 473(16):2471-83. PubMed ID: 27279651 [Abstract] [Full Text] [Related]
15. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). Liu CE, Liu PQ, Ames GF. J Biol Chem; 1997 Aug 29; 272(35):21883-91. PubMed ID: 9268321 [Abstract] [Full Text] [Related]
16. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity. Livnat-Levanon N, I Gilson A, Ben-Tal N, Lewinson O. Sci Rep; 2016 Feb 22; 6():21696. PubMed ID: 26905293 [Abstract] [Full Text] [Related]
17. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation. Singh S, Mandlik V. Mol Biosyst; 2015 May 22; 11(5):1251-9. PubMed ID: 25761976 [Abstract] [Full Text] [Related]
18. Monitoring conformational changes during the catalytic cycle of OpuAA, the ATPase subunit of the ABC transporter OpuA from Bacillus subtilis. Horn C, Jenewein S, Tschapek B, Bouschen W, Metzger S, Bremer E, Schmitt L. Biochem J; 2008 Jun 01; 412(2):233-44. PubMed ID: 18321243 [Abstract] [Full Text] [Related]
19. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Sherman DJ, Lazarus MB, Murphy L, Liu C, Walker S, Ruiz N, Kahne D. Proc Natl Acad Sci U S A; 2014 Apr 01; 111(13):4982-7. PubMed ID: 24639492 [Abstract] [Full Text] [Related]
20. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle. Heuveling J, Frochaux V, Ziomkowska J, Wawrzinek R, Wessig P, Herrmann A, Schneider E. Biochim Biophys Acta; 2014 Jan 01; 1838(1 Pt B):106-16. PubMed ID: 24021237 [Abstract] [Full Text] [Related] Page: [Next] [New Search]