These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 321448
1. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons. Buttlaire DH, Chon M. J Biol Chem; 1977 Mar 25; 252(6):1957-64. PubMed ID: 321448 [Abstract] [Full Text] [Related]
2. Escherichia coli succinyl coenzyme A synthetase. Inhibition of ATP-stimulated succinate----succinyl coenzyme A exchange at low succinyl coenzyme A concentrations by an ADP trap. Nishimura JS, Mitchell T. J Biol Chem; 1984 Feb 25; 259(4):2144-8. PubMed ID: 6365903 [Abstract] [Full Text] [Related]
3. Nuclear magnetic resonance relaxation time studies on the manganese(II) ion complex with succinyl coenzyme A synthetase from Escherichia coli. Lam YF, Bridger WA, Kotowycz G. Biochemistry; 1976 Oct 19; 15(21):4742-8. PubMed ID: 788782 [Abstract] [Full Text] [Related]
4. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site. Buttlaire DH, Reed GH, Himes R. J Biol Chem; 1975 Jan 10; 250(1):261-70. PubMed ID: 166989 [Abstract] [Full Text] [Related]
5. Magnetic resonance studies of the manganese guanosine di- and triphosphate complexes with elongation factor Tu. Wilson GE, Cohn M. J Biol Chem; 1977 Mar 25; 252(6):2004-9. PubMed ID: 191448 [Abstract] [Full Text] [Related]
6. Equilibrium and water proton relaxation rate enhancement properties of formyltetrahydrofolate synthetase-manganous ion-substrate complexes. Buttlaire DH, Reed GH, Himes RH. J Biol Chem; 1975 Jan 10; 250(1):254-60. PubMed ID: 166988 [Abstract] [Full Text] [Related]
7. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine. Villafranca JJ, Ash DE, Wedler FC. Biochemistry; 1976 Feb 10; 15(3):544-53. PubMed ID: 3200 [Abstract] [Full Text] [Related]
8. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ, Ash DE, Wedler FC. Biochemistry; 1976 Feb 10; 15(3):536-43. PubMed ID: 766828 [Abstract] [Full Text] [Related]
9. Catalysis of a step of the overall reaction by the alpha subunit of Escherichia coli succinyl coenzyme A synthetase. Pearson PH, Bridger WA. J Biol Chem; 1975 Nov 10; 250(21):8524-9. PubMed ID: 1104606 [Abstract] [Full Text] [Related]
11. A phosphorus 31 nuclear magnetic resonance study of the intermediates of the Escherichia coli succinyl coenzyme A synthetase reaction. Evidence for substrate synergism and catalytic cooperativity. Vogel HJ, Bridger WA. J Biol Chem; 1982 May 10; 257(9):4834-42. PubMed ID: 7040388 [No Abstract] [Full Text] [Related]
12. Novel mechanisms of Escherichia coli succinyl-coenzyme A synthetase regulation. Birney M, Um HD, Klein C. J Bacteriol; 1996 May 10; 178(10):2883-9. PubMed ID: 8631677 [Abstract] [Full Text] [Related]
13. Structural basis for the binding of succinate to succinyl-CoA synthetase. Huang J, Fraser ME. Acta Crystallogr D Struct Biol; 2016 Aug 10; 72(Pt 8):912-21. PubMed ID: 27487822 [Abstract] [Full Text] [Related]
14. Affinity labeling of succinyl-CoA synthetase from Escherichia coli by the 2',3'-dialdehyde derivative of adenosine 5'-diphosphate. Nishimura JS, Mitchell T, Collier GE, Matula JM, Ball DJ. Eur J Biochem; 1983 Oct 17; 136(1):83-7. PubMed ID: 6352264 [Abstract] [Full Text] [Related]
15. Investigations of equilibrium complexes of myoxin subfragment 1 with the manganous ion and adenosine diphosphate using magnetic resonance techniques. Bagshow CR, Reed GH. J Biol Chem; 1976 Apr 10; 251(7):1975-83. PubMed ID: 178650 [Abstract] [Full Text] [Related]
16. Adenosine 5'-O-(3-thio)triphosphate, a substrate and potent inhibitor of Escherichia coli succinyl-CoA synthetase. Additional evidence for a cooperative alternating-sites mechanism. Nishimura JS, Mitchell T. J Biol Chem; 1984 Aug 10; 259(15):9642-5. PubMed ID: 6378911 [Abstract] [Full Text] [Related]
17. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM, Lee HC, Peisach J, Mildvan AS. Biochemistry; 2002 Apr 09; 41(14):4655-68. PubMed ID: 11926828 [Abstract] [Full Text] [Related]
18. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase. Jarori GK, Mehta A, Kasturi SR, Kenkare UW. Eur J Biochem; 1984 Sep 17; 143(3):669-76. PubMed ID: 6090139 [Abstract] [Full Text] [Related]
19. Magnetic resonance and kinetic studies of pyruvate, phosphate dikinase. Interaction of oxalate with the phosphorylated form of the enzyme. Michaels G, Milner Y, Reed GH. Biochemistry; 1975 Jul 15; 14(14):3213-9. PubMed ID: 167819 [Abstract] [Full Text] [Related]
20. Magnetic resonance studies on manganese-nucleotide complexes of phosphoglycerate kinase. Chapman BE, O'Sullivan WJ, Scopes RK, Reed GH. Biochemistry; 1977 Mar 08; 16(5):1005-10. PubMed ID: 321006 [Abstract] [Full Text] [Related] Page: [Next] [New Search]