These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 32147240

  • 1. A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics.
    Cilla M, Casales M, Peña E, Martínez MA, Malvè M.
    J Biomech; 2020 Apr 16; 103():109691. PubMed ID: 32147240
    [Abstract] [Full Text] [Related]

  • 2. Blood flow analysis of the aortic arch using computational fluid dynamics.
    Numata S, Itatani K, Kanda K, Doi K, Yamazaki S, Morimoto K, Manabe K, Ikemoto K, Yaku H.
    Eur J Cardiothorac Surg; 2016 Jun 16; 49(6):1578-85. PubMed ID: 26792932
    [Abstract] [Full Text] [Related]

  • 3. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population.
    Callaghan FM, Grieve SM.
    Am J Physiol Heart Circ Physiol; 2018 Nov 01; 315(5):H1174-H1181. PubMed ID: 30028202
    [Abstract] [Full Text] [Related]

  • 4. [Application of computational fluid dynamics in hemodynamic research of aortic arch].
    Zhang T, Xiong J, Hu XZ, Jia X, Luan SL, Guo W.
    Zhonghua Yi Xue Za Zhi; 2013 Jan 29; 93(5):380-4. PubMed ID: 23660214
    [Abstract] [Full Text] [Related]

  • 5. Wall shear stress and pressure patterns in aortic stenosis patients with and without aortic dilation captured by high-performance image-based computational fluid dynamics.
    Zolfaghari H, Andiapen M, Baumbach A, Mathur A, Kerswell RR.
    PLoS Comput Biol; 2023 Oct 29; 19(10):e1011479. PubMed ID: 37851683
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Prediction for future occurrence of type A aortic dissection using computational fluid dynamics.
    Hohri Y, Numata S, Itatani K, Kanda K, Yamazaki S, Inoue T, Yaku H.
    Eur J Cardiothorac Surg; 2021 Jul 30; 60(2):384-391. PubMed ID: 33619516
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M, Chua LP, Ghista DN, Tan YS.
    Biomed Eng Online; 2005 Mar 04; 4():14. PubMed ID: 15745458
    [Abstract] [Full Text] [Related]

  • 18. Understanding the fluid mechanics behind transverse wall shear stress.
    Mohamied Y, Sherwin SJ, Weinberg PD.
    J Biomech; 2017 Jan 04; 50():102-109. PubMed ID: 27863740
    [Abstract] [Full Text] [Related]

  • 19. Numerical analysis of the hemodynamics of rat aorta based on magnetic resonance imaging and fluid-structure interaction.
    Han L, Ren Q, Lian J, Luo L, Liu H, Ma T, Li X, Deng X, Liu X.
    Int J Numer Method Biomed Eng; 2021 Jun 04; 37(6):e3457. PubMed ID: 33750033
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.