These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 32169709

  • 1. Phytotoxicity of iron-based materials in mung bean: Seed germination tests.
    Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S.
    Chemosphere; 2020 Jul; 251():126432. PubMed ID: 32169709
    [Abstract] [Full Text] [Related]

  • 2. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean.
    Sun Y, Jing R, Zheng F, Zhang S, Jiao W, Wang F.
    Chemosphere; 2019 Dec; 236():124336. PubMed ID: 31310976
    [Abstract] [Full Text] [Related]

  • 3. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y, Fang Z, Kang Y, Tsang EP.
    J Hazard Mater; 2014 Jun 30; 275():230-7. PubMed ID: 24880637
    [Abstract] [Full Text] [Related]

  • 4. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa.
    Wang J, Fang Z, Cheng W, Tsang PE, Zhao D.
    Ecotoxicology; 2016 Aug 30; 25(6):1202-10. PubMed ID: 27207497
    [Abstract] [Full Text] [Related]

  • 5. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.
    El-Temsah YS, Joner EJ.
    Environ Toxicol; 2012 Jan 30; 27(1):42-9. PubMed ID: 20549639
    [Abstract] [Full Text] [Related]

  • 6. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations.
    Li X, Yang Y, Gao B, Zhang M.
    PLoS One; 2015 Jan 30; 10(4):e0122884. PubMed ID: 25901959
    [Abstract] [Full Text] [Related]

  • 7. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation.
    Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D.
    Environ Pollut; 2016 Mar 30; 210():338-45. PubMed ID: 26803790
    [Abstract] [Full Text] [Related]

  • 8. Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna.
    Guha T, Gopal G, Chatterjee R, Mukherjee A, Kundu R.
    Ecotoxicol Environ Saf; 2020 Nov 30; 204():111104. PubMed ID: 32791360
    [Abstract] [Full Text] [Related]

  • 9. Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.).
    Zhang R, Bai X, Shao J, Chen A, Wu H, Luo S.
    Ecotoxicol Environ Saf; 2020 Oct 15; 203():111054. PubMed ID: 32888616
    [Abstract] [Full Text] [Related]

  • 10. Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil.
    Kim JH, Kim D, Seo SM, Kim D.
    Ecotoxicology; 2019 Oct 15; 28(8):869-877. PubMed ID: 31392635
    [Abstract] [Full Text] [Related]

  • 11. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.).
    Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R.
    Plant Physiol Biochem; 2018 Jun 15; 127():403-413. PubMed ID: 29679934
    [Abstract] [Full Text] [Related]

  • 12. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.
    Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D.
    J Hazard Mater; 2016 Nov 15; 318():533-540. PubMed ID: 27469041
    [Abstract] [Full Text] [Related]

  • 13. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species.
    Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi Ghirardini A.
    Ecotoxicol Environ Saf; 2016 Jan 15; 123():81-8. PubMed ID: 26232851
    [Abstract] [Full Text] [Related]

  • 14. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology.
    Yasur J, Rani PU.
    Environ Sci Pollut Res Int; 2013 Dec 15; 20(12):8636-48. PubMed ID: 23702569
    [Abstract] [Full Text] [Related]

  • 15. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans.
    Yang YF, Chen PJ, Liao VH.
    Chemosphere; 2016 May 15; 150():615-623. PubMed ID: 26830375
    [Abstract] [Full Text] [Related]

  • 16. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil.
    Su H, Fang Z, Tsang PE, Fang J, Zhao D.
    Environ Pollut; 2016 Jul 15; 214():94-100. PubMed ID: 27064615
    [Abstract] [Full Text] [Related]

  • 17. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres.
    Xie Y, Cheng W, Tsang PE, Fang Z.
    J Environ Manage; 2016 Jan 15; 166():478-83. PubMed ID: 26560640
    [Abstract] [Full Text] [Related]

  • 18. Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization.
    Teodoro M, Clemente R, Ferrer-Bustins E, Martínez-Fernández D, Pilar Bernal M, Vítková M, Vítek P, Komárek M.
    Nanomaterials (Basel); 2020 Aug 05; 10(8):. PubMed ID: 32764467
    [Abstract] [Full Text] [Related]

  • 19. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH, Kung TA, Chen PJ.
    Environ Pollut; 2019 Sep 05; 252(Pt B):1920-1932. PubMed ID: 31227347
    [Abstract] [Full Text] [Related]

  • 20. Effect of vermiculite modified with nano-iron-based material on stabilization of lead in lead contaminated soil.
    Shao X, Yu J, Chang J, Huang Z, Jiang Y, Deng S.
    Environ Sci Pollut Res Int; 2023 Jul 05; 30(35):83821-83833. PubMed ID: 37349492
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.