These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Arsenic(V) removal behavior of schwertmannite synthesized by KMnO4 rapid oxidation with high adsorption capacity and Fe utilization. Cao Q, Chen C, Li K, Sun T, Shen Z, Jia J. Chemosphere; 2021 Feb; 264(Pt 1):128398. PubMed ID: 33007570 [Abstract] [Full Text] [Related]
24. The influence of Mn(II) on transformation of Cr-absorbed Schwertmannite: Mineral phase transition and elemental fate. Tang H, Chen M, Wu P, Li Y, Wang T, Wu J, Sun L, Shang Z. Water Res; 2024 Jun 15; 257():121656. PubMed ID: 38677110 [Abstract] [Full Text] [Related]
27. Effects of aluminum incorporation on the schwertmannite structure and surface properties. Carrero S, Fernandez-Martinez A, Pérez-López R, Cama J, Dejoie C, Nieto JM. Environ Sci Process Impacts; 2022 Sep 21; 24(9):1383-1391. PubMed ID: 35838030 [Abstract] [Full Text] [Related]
28. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Jönsson J, Sjöberg S, Lövgren L. Water Res; 2006 Mar 21; 40(5):969-74. PubMed ID: 16487563 [Abstract] [Full Text] [Related]
30. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite. Choppala G, Burton ED. PLoS One; 2018 Mar 21; 13(12):e0208355. PubMed ID: 30517205 [Abstract] [Full Text] [Related]
31. Microbial reduction of schwertmannite by co-cultured iron- and sulfate-reducing bacteria. Ke C, Guo C, Zhang S, Deng Y, Li X, Li Y, Lu G, Ling F, Dang Z. Sci Total Environ; 2023 Feb 25; 861():160551. PubMed ID: 36460112 [Abstract] [Full Text] [Related]
32. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Liao Y, Liang J, Zhou L. Chemosphere; 2011 Apr 25; 83(3):295-301. PubMed ID: 21239041 [Abstract] [Full Text] [Related]
33. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Kim HJ, Kim Y. Chemosphere; 2021 Apr 25; 269():128720. PubMed ID: 33121807 [Abstract] [Full Text] [Related]
34. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Dixit S, Hering JG. Environ Sci Technol; 2003 Sep 15; 37(18):4182-9. PubMed ID: 14524451 [Abstract] [Full Text] [Related]
35. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction. Meng X, Zhang C, Zhuang J, Zheng G, Zhou L. Chemosphere; 2020 Apr 15; 244():125523. PubMed ID: 31812054 [Abstract] [Full Text] [Related]
37. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite. Hong J, Liu L, Zhang Z, Xia X, Yang L, Ning Z, Liu C, Qiu G. J Hazard Mater; 2022 Jul 05; 433():128716. PubMed ID: 35358816 [Abstract] [Full Text] [Related]
39. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite. Li J, Xie Y, Lu G, Ye H, Yi X, Reinfelder JR, Lin Z, Dang Z. Environ Sci Pollut Res Int; 2018 Jun 05; 25(16):15492-15506. PubMed ID: 29569199 [Abstract] [Full Text] [Related]
40. A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca-Fe-AsO4 compounds. Park I, Ryota T, Yuto T, Tabelin CB, Phengsaart T, Jeon S, Ito M, Hiroyoshi N. J Environ Manage; 2021 Oct 01; 295():113052. PubMed ID: 34147990 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]