These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 32171940
41. Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability. Zhou JX, Zhou YJ, Zhang J, Dong Y, Liu FW, Wu ZH, Bi WL, Qin JM. Environ Technol; 2022 Oct; 43(24):3706-3718. PubMed ID: 34018903 [Abstract] [Full Text] [Related]
42. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture. Zeng Y, Wang H, Guo C, Wan J, Fan C, Reinfelder JR, Lu G, Wu F, Huang W, Dang Z. Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307 [Abstract] [Full Text] [Related]
43. Efficient adsorption of Cr(VI) in acidic environment by nano-scaled schwertmannite prepared through pH regulation: characteristics, performances, and mechanism. Ding B, Wang X, Feng K, Fu J, Liang J, Zhou L. Environ Sci Pollut Res Int; 2022 Nov; 29(51):77344-77358. PubMed ID: 35675009 [Abstract] [Full Text] [Related]
48. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite. Johnston SG, Burton ED, Moon EM. Environ Sci Technol; 2016 Aug 02; 50(15):8010-9. PubMed ID: 27403840 [Abstract] [Full Text] [Related]
49. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater. Liu F, Zhou J, Zhang S, Liu L, Zhou L, Fan W. PLoS One; 2015 Aug 02; 10(9):e0138891. PubMed ID: 26398214 [Abstract] [Full Text] [Related]
50. Chemical Mineralization of AMD into Schwertmannite Fixing Iron and Sulfate Ions by Structure and Adsorption: Paving the Way for Enhanced Mineralization Capacity. He X, Tang C, Wang H, Yan H, Jin H. Bull Environ Contam Toxicol; 2024 Feb 11; 112(2):33. PubMed ID: 38342847 [Abstract] [Full Text] [Related]
51. Methyl arsenic adsorption and desorption behavior on iron oxides. Lafferty BJ, Loeppert RH. Environ Sci Technol; 2005 Apr 01; 39(7):2120-7. PubMed ID: 15871246 [Abstract] [Full Text] [Related]
52. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Zhang Z, Yin N, Du H, Cai X, Cui Y. Chemosphere; 2016 May 01; 151():108-15. PubMed ID: 26933901 [Abstract] [Full Text] [Related]
53. An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite. Choppala G, Karimian N, Burton ED. J Hazard Mater; 2022 Jun 05; 431():128580. PubMed ID: 35359110 [Abstract] [Full Text] [Related]
54. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Leuz AK, Mönch H, Johnson CA. Environ Sci Technol; 2006 Dec 01; 40(23):7277-82. PubMed ID: 17180978 [Abstract] [Full Text] [Related]
55. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Kumpulainen S, von der Kammer F, Hofmann T. Water Res; 2008 Apr 01; 42(8-9):2051-60. PubMed ID: 18221768 [Abstract] [Full Text] [Related]
56. Arsenic sorption onto natural hematite, magnetite, and goethite. Giménez J, Martínez M, de Pablo J, Rovira M, Duro L. J Hazard Mater; 2007 Mar 22; 141(3):575-80. PubMed ID: 16978766 [Abstract] [Full Text] [Related]
57. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2. Wang WM, Song J, Han X. J Hazard Mater; 2013 Nov 15; 262():412-9. PubMed ID: 24076478 [Abstract] [Full Text] [Related]
58. Fe(II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. Fan C, Guo C, Chen W, Lu G, Shen Y, Dang Z. J Environ Sci (China); 2023 Apr 15; 126():612-620. PubMed ID: 36503787 [Abstract] [Full Text] [Related]