These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
281 related items for PubMed ID: 32183019
1. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity. Zhang L, Zhu T, Yang C, Jang HY, Jang HJ, Liu L, Park S. Nanomaterials (Basel); 2020 Mar 13; 10(3):. PubMed ID: 32183019 [Abstract] [Full Text] [Related]
2. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering. Hossain MK, Drmosh QA. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 15; 263():120141. PubMed ID: 34280795 [Abstract] [Full Text] [Related]
3. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. Chen M, Phang IY, Lee MR, Yang JK, Ling XY. Langmuir; 2013 Jun 11; 29(23):7061-9. PubMed ID: 23706081 [Abstract] [Full Text] [Related]
4. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. Wen P, Yang F, Ge C, Li S, Xu Y, Chen L. Nanotechnology; 2021 Jul 09; 32(39):. PubMed ID: 34161934 [Abstract] [Full Text] [Related]
5. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film. Gao M, Lin X, Li Z, Wang X, Qiao Y, Zhao H, Zhang J, Wang L. Nanotechnology; 2019 Aug 23; 30(34):345604. PubMed ID: 31067524 [Abstract] [Full Text] [Related]
6. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Zhao Y, Yang D, Li X, Liu Y, Hu X, Zhou D, Lu Y. Nanoscale; 2017 Jan 19; 9(3):1087-1096. PubMed ID: 27973628 [Abstract] [Full Text] [Related]
7. Self-Assembly of Au-Ag Alloy Hollow Nanochains for Enhanced Plasmon-Driven Surface-Enhanced Raman Scattering. Liu W, Zhang J, Hou J, Aziguli H, Zhang Q, Jiang H. Nanomaterials (Basel); 2022 Apr 07; 12(8):. PubMed ID: 35457952 [Abstract] [Full Text] [Related]
8. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. Li X, Lin X, Fang G, Dong H, Li J, Cong S, Wang L, Yang S. J Colloid Interface Sci; 2022 Aug 15; 620():388-398. PubMed ID: 35436620 [Abstract] [Full Text] [Related]
9. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A. ACS Nano; 2011 Jul 26; 5(7):5433-43. PubMed ID: 21675769 [Abstract] [Full Text] [Related]
10. [Surface Enhanced Raman Spectroscopic Studies on the Coupling Effect of Multilayer Au@SiO2 Film]. Hu DJ, Zhang XJ, Xu MM, Yao JL, Gu RA. Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May 26; 35(5):1262-5. PubMed ID: 26415440 [Abstract] [Full Text] [Related]
11. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al2O3@Au Arrays for Surface-Enhanced Raman Scattering. Yang C, Chen Y, Liu D, Chen C, Wang J, Fan Y, Huang S, Lei W. ACS Appl Mater Interfaces; 2018 Mar 07; 10(9):8317-8323. PubMed ID: 29441776 [Abstract] [Full Text] [Related]
12. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core-Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW. ACS Appl Mater Interfaces; 2019 Jan 23; 11(3):3617-3626. PubMed ID: 30608142 [Abstract] [Full Text] [Related]
13. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography. Ho CC, Zhao K, Lee TY. Nanoscale; 2014 Aug 07; 6(15):8606-11. PubMed ID: 24978350 [Abstract] [Full Text] [Related]
14. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
15. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Zhang Q, Lee YH, Phang IY, Lee CK, Ling XY. Small; 2014 Jul 09; 10(13):2703-11. PubMed ID: 24616294 [Abstract] [Full Text] [Related]
16. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Li C, Liu A, Zhang C, Wang M, Li Z, Xu S, Jiang S, Yu J, Yang C, Man B. Opt Express; 2017 Aug 21; 25(17):20631-20641. PubMed ID: 29041742 [Abstract] [Full Text] [Related]
17. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications. Singh P, König TAF, Jaiswal A. ACS Appl Mater Interfaces; 2018 Nov 14; 10(45):39380-39390. PubMed ID: 30345737 [Abstract] [Full Text] [Related]
18. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy. Zheng M, Zhu X, Chen Y, Xiang Q, Duan H. Nanotechnology; 2017 Jan 27; 28(4):045303. PubMed ID: 27981948 [Abstract] [Full Text] [Related]
19. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Guo Q, Xu M, Yuan Y, Gu R, Yao J. Langmuir; 2016 May 10; 32(18):4530-7. PubMed ID: 27101361 [Abstract] [Full Text] [Related]
20. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array. Zhang W, Xue T, Zhang L, Lu F, Liu M, Meng C, Mao D, Mei T. Sensors (Basel); 2019 Sep 14; 19(18):. PubMed ID: 31540010 [Abstract] [Full Text] [Related] Page: [Next] [New Search]