These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 32183026
1. Comprehensive Phosphoproteomic Analysis of Pepper Fruit Development Provides Insight into Plant Signaling Transduction. Liu Z, Lv J, Liu Y, Wang J, Zhang Z, Chen W, Song J, Yang B, Tan F, Zou X, Ou L. Int J Mol Sci; 2020 Mar 13; 21(6):. PubMed ID: 32183026 [Abstract] [Full Text] [Related]
2. Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development. Liu Z, Lv J, Zhang Z, Li H, Yang B, Chen W, Dai X, Li X, Yang S, Liu L, Ou L, Ma Y, Zou X. J Proteome Res; 2019 Mar 01; 18(3):982-994. PubMed ID: 30650966 [Abstract] [Full Text] [Related]
3. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development. Jang YK, Jung ES, Lee HA, Choi D, Lee CH. J Agric Food Chem; 2015 Nov 04; 63(43):9452-60. PubMed ID: 26465673 [Abstract] [Full Text] [Related]
4. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y, Pan Z, Wang L, Ding Y, Xu Q, Xiao S, Deng X. Physiol Plant; 2014 Feb 04; 150(2):252-70. PubMed ID: 23786612 [Abstract] [Full Text] [Related]
5. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling. Lv DW, Ge P, Zhang M, Cheng ZW, Li XH, Yan YM. J Proteome Res; 2014 May 02; 13(5):2381-95. PubMed ID: 24679076 [Abstract] [Full Text] [Related]
6. Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. Razo-Mendivil FG, Hernandez-Godínez F, Hayano-Kanashiro C, Martínez O. PLoS One; 2021 May 02; 16(8):e0256319. PubMed ID: 34428253 [Abstract] [Full Text] [Related]
7. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.). Mayorga-Gómez A, Nambeesan SU. BMC Plant Biol; 2020 May 28; 20(1):241. PubMed ID: 32466743 [Abstract] [Full Text] [Related]
8. Heteromeric Geranylgeranyl Diphosphate Synthase Contributes to Carotenoid Biosynthesis in Ripening Fruits of Red Pepper ( Capsicum annuum var. conoides). Wang Q, Huang XQ, Cao TJ, Zhuang Z, Wang R, Lu S. J Agric Food Chem; 2018 Nov 07; 66(44):11691-11700. PubMed ID: 30339374 [Abstract] [Full Text] [Related]
9. The SnRK2 family in pepper (Capsicum annuum L.): genome-wide identification and expression analyses during fruit development and under abiotic stress. Wu Z, Cheng J, Hu F, Qin C, Xu X, Hu K. Genes Genomics; 2020 Oct 07; 42(10):1117-1130. PubMed ID: 32737808 [Abstract] [Full Text] [Related]
10. Identification of QTLs Controlling α-Glucosidase Inhibitory Activity in Pepper (Capsicum annuum L.) Leaf and Fruit Using Genotyping-by-Sequencing Analysis. Park D, Barka GD, Yang EY, Cho MC, Yoon JB, Lee J. Genes (Basel); 2020 Sep 23; 11(10):. PubMed ID: 32977701 [Abstract] [Full Text] [Related]
11. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM. Ann Bot; 2015 Sep 23; 116(4):637-47. PubMed ID: 25814060 [Abstract] [Full Text] [Related]
12. Jasmonate resistant 1 and ethylene responsive factor 11 are involved in chilling sensitivity in pepper fruit (Capsicum annuum L.). Lee JG, Seo J, Kang BC, Choi JH, Lee EJ. Sci Rep; 2022 Feb 24; 12(1):3141. PubMed ID: 35210544 [Abstract] [Full Text] [Related]
13. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.). Romero-Castillo RA, Roy Choudhury S, León-Félix J, Pandey S. Plant Sci; 2015 May 24; 234():97-109. PubMed ID: 25804813 [Abstract] [Full Text] [Related]
14. A Phosphoproteomic Analysis Pipeline for Peels of Tropical Fruits. Juarez-Escobar J, Elizalde-Contreras JM, Loyola-Vargas VM, Ruiz-May E. Methods Mol Biol; 2020 May 24; 2139():179-196. PubMed ID: 32462587 [Abstract] [Full Text] [Related]
15. Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.). Alós E, Rodrigo MJ, Zacarías L. Plant Sci; 2013 Jun 24; 207():2-11. PubMed ID: 23602093 [Abstract] [Full Text] [Related]
16. Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. Park S, Kang K, Lee K, Choi D, Kim YS, Back K. Planta; 2009 Nov 24; 230(6):1197-206. PubMed ID: 19760262 [Abstract] [Full Text] [Related]
17. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. González-Gordo S, López-Jaramillo J, Rodríguez-Ruiz M, Taboada J, Palma JM, Corpas FJ. Biochem J; 2024 Jul 03; 481(13):883-901. PubMed ID: 38884605 [Abstract] [Full Text] [Related]
18. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST). Lee JM, Lee SJ, Rose JK, Yeam I, Kim BD. Biochem Biophys Res Commun; 2014 Apr 18; 446(4):882-8. PubMed ID: 24631906 [Abstract] [Full Text] [Related]
19. Quantitative phosphoproteomics analysis of nitric oxide-responsive phosphoproteins in cotton leaf. Fan S, Meng Y, Song M, Pang C, Wei H, Liu J, Zhan X, Lan J, Feng C, Zhang S, Yu S. PLoS One; 2014 Apr 18; 9(4):e94261. PubMed ID: 24714030 [Abstract] [Full Text] [Related]
20. Growth, yield, and fruit quality of pepper plants amended with two sanitized sewage sludges. Pascual I, Azcona I, Aguirreolea J, Morales F, Corpas FJ, Palma JM, Rellán-Alvarez R, Sánchez-Díaz M. J Agric Food Chem; 2010 Jun 09; 58(11):6951-9. PubMed ID: 20450196 [Abstract] [Full Text] [Related] Page: [Next] [New Search]