These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 32189712

  • 1. Neurofilament Protein as a Potential Biomarker of Axonal Degeneration in Experimental Autoimmune Encephalomyelitis.
    Wang P, Jiang LL, Wang C, Zhu Z, Lai C.
    Neurol India; 2020; 68(2):364-367. PubMed ID: 32189712
    [Abstract] [Full Text] [Related]

  • 2. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
    Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Mun Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC.
    Brain; 2012 Jun; 135(Pt 6):1794-818. PubMed ID: 22544872
    [Abstract] [Full Text] [Related]

  • 3. Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis.
    Gresle MM, Shaw G, Jarrott B, Alexandrou EN, Friedhuber A, Kilpatrick TJ, Butzkueven H.
    J Neurosci Res; 2008 Dec; 86(16):3548-55. PubMed ID: 18709652
    [Abstract] [Full Text] [Related]

  • 4. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE.
    Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG.
    Brain; 2004 Feb; 127(Pt 2):294-303. PubMed ID: 14662515
    [Abstract] [Full Text] [Related]

  • 5. Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis.
    Quintanar JL, Salinas E, Quintanar-Stephano A.
    Neuropeptides; 2011 Feb; 45(1):43-8. PubMed ID: 21056467
    [Abstract] [Full Text] [Related]

  • 6. Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis.
    Smerjac SM, Bizzozero OA.
    J Neurochem; 2008 May; 105(3):763-72. PubMed ID: 18088377
    [Abstract] [Full Text] [Related]

  • 7. Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis.
    Budde MD, Xie M, Cross AH, Song SK.
    J Neurosci; 2009 Mar 04; 29(9):2805-13. PubMed ID: 19261876
    [Abstract] [Full Text] [Related]

  • 8. Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice.
    Bannerman PG, Hahn A.
    J Neurol Sci; 2007 Sep 15; 260(1-2):23-32. PubMed ID: 17493638
    [Abstract] [Full Text] [Related]

  • 9. Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat.
    Papadopoulos D, Pham-Dinh D, Reynolds R.
    Exp Neurol; 2006 Feb 15; 197(2):373-85. PubMed ID: 16337942
    [Abstract] [Full Text] [Related]

  • 10. [Features of pathological changes in the non-myelin sheath of rats with experimental autoimmune encephalomyelitis].
    Zhang JF, Huang R, Yang YJ, Xu J, Jin SJ.
    Zhongguo Dang Dai Er Ke Za Zhi; 2012 Apr 15; 14(4):306-9. PubMed ID: 22537964
    [Abstract] [Full Text] [Related]

  • 11. Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments.
    Huizinga R, Gerritsen W, Heijmans N, Amor S.
    Neurobiol Dis; 2008 Dec 15; 32(3):461-70. PubMed ID: 18804534
    [Abstract] [Full Text] [Related]

  • 12. CXCR7 antagonism prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivo axial diffusivity.
    Cruz-Orengo L, Chen YJ, Kim JH, Dorsey D, Song SK, Klein RS.
    J Neuroinflammation; 2011 Dec 06; 8():170. PubMed ID: 22145790
    [Abstract] [Full Text] [Related]

  • 13. Upregulation of calpain correlates with increased neurodegeneration in acute experimental auto-immune encephalomyelitis.
    Guyton MK, Wingrave JM, Yallapragada AV, Wilford GG, Sribnick EA, Matzelle DD, Tyor WR, Ray SK, Banik NL.
    J Neurosci Res; 2005 Jul 01; 81(1):53-61. PubMed ID: 15952172
    [Abstract] [Full Text] [Related]

  • 14. Glial reactions and degeneration of myelinated processes in spinal cord gray matter in chronic experimental autoimmune encephalomyelitis.
    Wu J, Ohlsson M, Warner EA, Loo KK, Hoang TX, Voskuhl RR, Havton LA.
    Neuroscience; 2008 Oct 15; 156(3):586-96. PubMed ID: 18718511
    [Abstract] [Full Text] [Related]

  • 15. Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis.
    Garay L, Gonzalez Deniselle MC, Meyer M, Costa JJ, Lima A, Roig P, De nicola AF.
    Brain Res; 2009 Aug 04; 1283():177-85. PubMed ID: 19497309
    [Abstract] [Full Text] [Related]

  • 16. [Pathological findings of axonal injury in a rat model of experimental allergic encephalomyelitis].
    Wang Y, Lv T, Liu X, Fang M, Liang Y.
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Apr 04; 32(4):482-6. PubMed ID: 22543126
    [Abstract] [Full Text] [Related]

  • 17. Sarm1 knockout protects against early but not late axonal degeneration in experimental allergic encephalomyelitis.
    Viar K, Njoku D, Secor McVoy J, Oh U.
    PLoS One; 2020 Apr 04; 15(6):e0235110. PubMed ID: 32584865
    [Abstract] [Full Text] [Related]

  • 18. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
    Prinz J, Karacivi A, Stormanns ER, Recks MS, Kuerten S.
    PLoS One; 2015 Apr 04; 10(12):e0144847. PubMed ID: 26658811
    [Abstract] [Full Text] [Related]

  • 19. Differential aspects of immune cell infiltration and neurodegeneration in acute and relapse experimental autoimmune encephalomyelitis.
    Soellner IA, Rabe J, Mauri V, Kaufmann J, Addicks K, Kuerten S.
    Clin Immunol; 2013 Dec 04; 149(3):519-29. PubMed ID: 24239839
    [Abstract] [Full Text] [Related]

  • 20. Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation.
    Jackson SJ, Pryce G, Diemel LT, Cuzner ML, Baker D.
    Neuroscience; 2005 Dec 04; 134(1):261-8. PubMed ID: 15953683
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.