These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
831 related items for PubMed ID: 32193082
21. Tracing the predominant sources of carbon in PM2.5 using δ13C values together with OC/EC and select inorganic ions over two COALESCE locations. Yadav K, Sunder Raman R, Bhardwaj A, Paul D, Gupta T, Shukla D, Laxmi Prasad SV, Lokesh KS, Venkatesh P. Chemosphere; 2022 Dec; 308(Pt 2):136420. PubMed ID: 36103921 [Abstract] [Full Text] [Related]
22. Source apportionment of PM2.5 in North India using source-oriented air quality models. Guo H, Kota SH, Sahu SK, Hu J, Ying Q, Gao A, Zhang H. Environ Pollut; 2017 Dec; 231(Pt 1):426-436. PubMed ID: 28830016 [Abstract] [Full Text] [Related]
23. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. Qiu X, Duan L, Gao J, Wang S, Chai F, Hu J, Zhang J, Yun Y. J Environ Sci (China); 2016 Feb; 40():75-83. PubMed ID: 26969547 [Abstract] [Full Text] [Related]
24. Chemical characteristics, source apportionment, and regional transport of marine fine particles toward offshore islands near the coastline of northwestern Taiwan Strait. Chang CC, Yuan CS, Li TC, Su YL, Tong C, Wu SP. Environ Sci Pollut Res Int; 2018 Nov; 25(32):32332-32345. PubMed ID: 30229491 [Abstract] [Full Text] [Related]
26. Understanding the origin of carbonaceous aerosols during periods of extensive biomass burning in northern India. Singh GK, Choudhary V, Rajeev P, Paul D, Gupta T. Environ Pollut; 2021 Feb 01; 270():116082. PubMed ID: 33272802 [Abstract] [Full Text] [Related]
27. Six sources mainly contributing to the haze episodes and health risk assessment of PM2.5 at Beijing suburb in winter 2016. Xu X, Zhang H, Chen J, Li Q, Wang X, Wang W, Zhang Q, Xue L, Ding A, Mellouki A. Ecotoxicol Environ Saf; 2018 Dec 30; 166():146-156. PubMed ID: 30265878 [Abstract] [Full Text] [Related]
28. Seasonal and spatial variability of secondary inorganic aerosols in PM2.5 at Agra: Source apportionment through receptor models. Agarwal A, Satsangi A, Lakhani A, Kumari KM. Chemosphere; 2020 Mar 30; 242():125132. PubMed ID: 31669986 [Abstract] [Full Text] [Related]
29. Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh. Rahman MM, Begum BA, Hopke PK, Nahar K, Thurston GD. Environ Pollut; 2020 Sep 30; 264():114798. PubMed ID: 32559884 [Abstract] [Full Text] [Related]
30. Source identification of water-soluble organic aerosols at a roadway site using a positive matrix factorization analysis. Park S, Cho SY, Bae MS. Sci Total Environ; 2015 Nov 15; 533():410-21. PubMed ID: 26184904 [Abstract] [Full Text] [Related]
31. Fine particulate matter pollution characteristics and source apportionment of Changchun atmosphere. Tang J, Yang Z, Tui Y, Wang J. Environ Sci Pollut Res Int; 2022 Feb 15; 29(9):12694-12705. PubMed ID: 35001262 [Abstract] [Full Text] [Related]
32. Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India. Gawhane RD, Rao PSP, Budhavant KB, Waghmare V, Meshram DC, Safai PD. Environ Sci Pollut Res Int; 2017 Sep 15; 24(26):21065-21072. PubMed ID: 28730356 [Abstract] [Full Text] [Related]
33. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Liu W, Xu Y, Liu W, Liu Q, Yu S, Liu Y, Wang X, Tao S. Environ Pollut; 2018 May 15; 236():514-528. PubMed ID: 29428706 [Abstract] [Full Text] [Related]
34. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Kong L, Tan Q, Feng M, Qu Y, An J, Liu X, Cheng N, Deng Y, Zhai R, Wang Z. Chemosphere; 2020 Mar 15; 243():125267. PubMed ID: 31734594 [Abstract] [Full Text] [Related]
35. Chemical composition and source apportionment of PM10 at an urban background site in a high-altitude Latin American megacity (Bogota, Colombia). Ramírez O, Sánchez de la Campa AM, Amato F, Catacolí RA, Rojas NY, de la Rosa J. Environ Pollut; 2018 Feb 15; 233():142-155. PubMed ID: 29059629 [Abstract] [Full Text] [Related]
36. [Characteristics and sources of organic carbon and elemental carbon in PM2.5 in Shanghai urban area]. Zhang YH, Wang DF, Zhao QB, Cui HX, Li J, Duan YS, Fu QY. Huan Jing Ke Xue; 2014 Sep 15; 35(9):3263-70. PubMed ID: 25518640 [Abstract] [Full Text] [Related]
37. Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea. Ryou HG, Heo J, Kim SY. Environ Pollut; 2018 Sep 15; 240():963-972. PubMed ID: 29910064 [Abstract] [Full Text] [Related]
38. Chemical characterization, source apportionment, and health risk assessment of PM2.5 in a typical industrial region in North China. Wang Z, Yan J, Zhang P, Li Z, Guo C, Wu K, Li X, Zhu X, Sun Z, Wei Y. Environ Sci Pollut Res Int; 2022 Oct 15; 29(47):71696-71708. PubMed ID: 35604610 [Abstract] [Full Text] [Related]
39. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Bisht DS, Dumka UC, Kaskaoutis DG, Pipal AS, Srivastava AK, Soni VK, Attri SD, Sateesh M, Tiwari S. Sci Total Environ; 2015 Jul 15; 521-522():431-45. PubMed ID: 25864155 [Abstract] [Full Text] [Related]
40. Molecular and elemental marker-based source apportionment of fine particulate matter at six sites in Hong Kong, China. Chow WS, Huang XHH, Leung KF, Huang L, Wu X, Yu JZ. Sci Total Environ; 2022 Mar 20; 813():152652. PubMed ID: 34954166 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]