These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
831 related items for PubMed ID: 32193082
61. Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. Kang M, Ren L, Ren H, Zhao Y, Kawamura K, Zhang H, Wei L, Sun Y, Wang Z, Fu P. Environ Pollut; 2018 Dec; 243(Pt B):1579-1587. PubMed ID: 30293040 [Abstract] [Full Text] [Related]
62. Insights into size-segregated particulate chemistry and sources in urban environment over central Indo-Gangetic Plain. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, Latif MT. Chemosphere; 2021 Jan; 263():128030. PubMed ID: 33297051 [Abstract] [Full Text] [Related]
63. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring]. Gao S, Pan XC, Madaniyazi LN, Xie J, He YH. Zhonghua Yu Fang Yi Xue Za Zhi; 2013 Sep; 47(9):837-42. PubMed ID: 24351566 [Abstract] [Full Text] [Related]
64. Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China. Liang Z, Zhao X, Chen J, Gao L, Zhu A, Wang Z, Li S, Shan J, Long Y, Yan C, Zhang K. Environ Geochem Health; 2019 Apr; 41(2):715-728. PubMed ID: 30116925 [Abstract] [Full Text] [Related]
65. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique. Tiwari S, Pipal AS, Srivastava AK, Bisht DS, Pandithurai G. Environ Sci Pollut Res Int; 2015 Feb; 22(4):2846-55. PubMed ID: 25217282 [Abstract] [Full Text] [Related]
66. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece. Argyropoulos G, Grigoratos T, Voutsinas M, Samara C. Environ Sci Pollut Res Int; 2013 Oct; 20(10):7214-30. PubMed ID: 23644947 [Abstract] [Full Text] [Related]
67. Seasonal source analysis of nitrogen and carbon aerosols of PM2.5 in typical cities of Zhejiang, China. Zou D, Sun Q, Liu J, Xu C, Song S. Chemosphere; 2022 Sep; 303(Pt 3):135026. PubMed ID: 35644241 [Abstract] [Full Text] [Related]
68. Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar. Sricharoenvech P, Lai A, Oo TN, Oo MM, Schauer JJ, Oo KL, Aye KK. Int J Environ Res Public Health; 2020 Jun 10; 17(11):. PubMed ID: 32531967 [Abstract] [Full Text] [Related]
69. Source apportionment of PM2.5 and visibility in Jinan, China. Cheng M, Tang G, Lv B, Li X, Wu X, Wang Y, Wang Y. J Environ Sci (China); 2021 Apr 10; 102():207-215. PubMed ID: 33637245 [Abstract] [Full Text] [Related]
70. Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Kim Y, Seo J, Kim JY, Lee JY, Kim H, Kim BM. Environ Sci Pollut Res Int; 2018 Feb 10; 25(5):4330-4343. PubMed ID: 29181753 [Abstract] [Full Text] [Related]
71. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Rajput P, Sarin MM, Sharma D, Singh D. Environ Sci Process Impacts; 2014 Feb 10; 16(10):2371-9. PubMed ID: 25124269 [Abstract] [Full Text] [Related]
72. Exploring the characteristics and sources of carbonaceous aerosols in the agro-pastoral transitional zone of Northern China. Hao Y, Meng X, Yu X, Lei M, Li W, Yang W, Shi F, Xie S. Environ Pollut; 2019 Jun 10; 249():589-597. PubMed ID: 30933756 [Abstract] [Full Text] [Related]
73. Source apportionment and health risk assessment of airborne particulates over central Indo-Gangetic Plain. Murari V, Singh N, Ranjan R, Singh RS, Banerjee T. Chemosphere; 2020 Oct 10; 257():127145. PubMed ID: 32497836 [Abstract] [Full Text] [Related]
74. Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China. Yang W, Xie S, Zhang Z, Hu J, Zhang L, Lei X, Zhong L, Hao Y, Shi F. Environ Sci Pollut Res Int; 2019 Sep 10; 26(26):26646-26663. PubMed ID: 31292872 [Abstract] [Full Text] [Related]
75. Characterization of PM2.5 in Delhi: role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. Nagar PK, Singh D, Sharma M, Kumar A, Aneja VP, George MP, Agarwal N, Shukla SP. Environ Sci Pollut Res Int; 2017 Nov 10; 24(32):25179-25189. PubMed ID: 28924742 [Abstract] [Full Text] [Related]
76. Seasonal changes and respiratory deposition flux of PM2.5 and PM10 bound metals in Dhaka, Bangladesh. Moniruzzaman M, Shaikh MAA, Saha B, Shahrukh S, Jawaa ZT, Khan MF. Chemosphere; 2022 Dec 10; 309(Pt 2):136794. PubMed ID: 36220426 [Abstract] [Full Text] [Related]
77. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. Khan JZ, Sun L, Tian Y, Shi G, Feng Y. J Environ Sci (China); 2021 Jan 10; 99():196-209. PubMed ID: 33183697 [Abstract] [Full Text] [Related]
78. [Size distributions and source apportionment of soluble ions in aerosol in Nanjing]. Xue GQ, Zhu B, Wang HL. Huan Jing Ke Xue; 2014 May 10; 35(5):1633-43. PubMed ID: 25055648 [Abstract] [Full Text] [Related]
79. A year-long study on PM2.5 and its carbonaceous components over eastern Himalaya in India: Contributions of local and transported fossil fuel and biomass burning during premonsoon. Mukherjee S, Dutta M, Ghosh A, Chatterjee A. Environ Res; 2022 Sep 10; 212(Pt D):113546. PubMed ID: 35660403 [Abstract] [Full Text] [Related]
80. Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Almeida SM, Manousakas M, Diapouli E, Kertesz Z, Samek L, Hristova E, Šega K, Alvarez RP, Belis CA, Eleftheriadis K, IAEA European Region Study GROUP. Environ Pollut; 2020 Nov 10; 266(Pt 3):115199. PubMed ID: 32777678 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]