These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genetic analysis of sucrose concentration in soybean seeds using a historical soybean genomic panel. Ficht A, Bruce R, Torkamaneh D, Grainger CM, Eskandari M, Rajcan I. Theor Appl Genet; 2022 Apr; 135(4):1375-1383. PubMed ID: 35112143 [Abstract] [Full Text] [Related]
23. Genome-wide association study for resistance to the Meloidogyne javanica causing root-knot nematode in soybean. Alekcevetch JC, de Lima Passianotto AL, Ferreira EGC, Dos Santos AB, da Silva DCG, Dias WP, Belzile F, Abdelnoor RV, Marcelino-Guimarães FC. Theor Appl Genet; 2021 Mar; 134(3):777-792. PubMed ID: 33469696 [Abstract] [Full Text] [Related]
27. Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003. Marsh JI, Hu H, Petereit J, Bayer PE, Valliyodan B, Batley J, Nguyen HT, Edwards D. Theor Appl Genet; 2022 Apr 23; 135(4):1443-1455. PubMed ID: 35141762 [Abstract] [Full Text] [Related]
28. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. Chang HX, Brown PJ, Lipka AE, Domier LL, Hartman GL. BMC Genomics; 2016 Feb 29; 17():153. PubMed ID: 26924079 [Abstract] [Full Text] [Related]
29. Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean. Assefa T, Otyama PI, Brown AV, Kalberer SR, Kulkarni RS, Cannon SB. BMC Genomics; 2019 Jun 26; 20(1):527. PubMed ID: 31242867 [Abstract] [Full Text] [Related]
30. Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections. Rolling WR, Dorrance AE, McHale LK. Theor Appl Genet; 2020 Dec 26; 133(12):3441-3454. PubMed ID: 32960288 [Abstract] [Full Text] [Related]
32. Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Ilut DC, Lipka AE, Jeong N, Bae DN, Kim DH, Kim JH, Redekar N, Yang K, Park W, Kang ST, Kim N, Moon JK, Saghai Maroof MA, Gore MA, Jeong SC. Theor Appl Genet; 2016 Mar 26; 129(3):453-68. PubMed ID: 26649868 [Abstract] [Full Text] [Related]
33. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM, Chang RZ, Liang QS, Guo Y, Ye C, Wang XB, Tao Y, Guan RX, Wang JY, Liu YL, Jin LG, Zhang XQ, Liu ZX, Zhang LJ, Chen J, Wang KJ, Nielsen R, Li RQ, Chen PY, Li WB, Reif JC, Purugganan M, Wang J, Zhang MC, Wang J, Qiu LJ. BMC Genomics; 2013 Aug 28; 14():579. PubMed ID: 23984715 [Abstract] [Full Text] [Related]
35. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. Zhang D, Zhang H, Hu Z, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G, Tang Y, An YC, Yu D. PLoS Genet; 2019 Jul 28; 15(7):e1008267. PubMed ID: 31291251 [Abstract] [Full Text] [Related]
37. Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). Hu D, Zhang H, Du Q, Hu Z, Yang Z, Li X, Wang J, Huang F, Yu D, Wang H, Kan G. Planta; 2020 Jan 06; 251(2):39. PubMed ID: 31907621 [Abstract] [Full Text] [Related]
38. Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Zhang Y, He J, Wang Y, Xing G, Zhao J, Li Y, Yang S, Palmer RG, Zhao T, Gai J. J Exp Bot; 2015 Oct 06; 66(20):6311-25. PubMed ID: 26163701 [Abstract] [Full Text] [Related]