These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
382 related items for PubMed ID: 32193569
41. Genome-wide association study of four yield-related traits at the R6 stage in soybean. Li X, Zhang X, Zhu L, Bu Y, Wang X, Zhang X, Zhou Y, Wang X, Guo N, Qiu L, Zhao J, Xing H. BMC Genet; 2019 Mar 29; 20(1):39. PubMed ID: 30922237 [Abstract] [Full Text] [Related]
42. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Meng S, He J, Zhao T, Xing G, Li Y, Yang S, Lu J, Wang Y, Gai J. Theor Appl Genet; 2016 Aug 29; 129(8):1557-76. PubMed ID: 27189002 [Abstract] [Full Text] [Related]
43. Cold tolerance SNPs and candidate gene mining in the soybean germination stage based on genome-wide association analysis. Chen Y, Liu Z, Han D, Yang Q, Li C, Shi X, Zhang M, Yang C, Qiu L, Jia H, Wang S, Lu W, Ma Q, Yan L. Theor Appl Genet; 2024 Jul 08; 137(8):178. PubMed ID: 38976061 [Abstract] [Full Text] [Related]
44. Nested association mapping of important agronomic traits in three interspecific soybean populations. Beche E, Gillman JD, Song Q, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo AM. Theor Appl Genet; 2020 Mar 08; 133(3):1039-1054. PubMed ID: 31974666 [Abstract] [Full Text] [Related]
45. Mapping and identification of QTL in 5601T × U99-310255 RIL population using SNP genotyping: soybean seed quality traits. Cunicelli M, Olukolu BA, Sams C, Schneider L, West D, Pantalone V. Mol Biol Rep; 2022 Jul 08; 49(7):6623-6632. PubMed ID: 35618938 [Abstract] [Full Text] [Related]
46. Genome-Wide Association Study of Yield Component Traits in Intermediate Wheatgrass and Implications in Genomic Selection and Breeding. Bajgain P, Zhang X, Anderson JA. G3 (Bethesda); 2019 Aug 08; 9(8):2429-2439. PubMed ID: 31147390 [Abstract] [Full Text] [Related]
47. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines. Palomeque L, Li-Jun L, Li W, Hedges B, Cober ER, Rajcan I. Theor Appl Genet; 2009 Aug 08; 119(3):417-27. PubMed ID: 19462148 [Abstract] [Full Text] [Related]
48. Identification and mapping of a novel resistance gene to the rice pathogen, Cercospora janseana. Addison CK, Angira B, Cerioli T, Groth DE, Richards JK, Linscombe SD, Famoso AN. Theor Appl Genet; 2021 Jul 08; 134(7):2221-2234. PubMed ID: 33825949 [Abstract] [Full Text] [Related]
49. Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R, Patil G, Wan J, Valliyodan B, Scaboo AM, Shannon JG, Nguyen HT. Plant Sci; 2016 Jan 08; 242():342-350. PubMed ID: 26566850 [Abstract] [Full Text] [Related]
50. Physiological breeding for yield improvement in soybean: solar radiation interception-conversion, and harvest index. Lopez MA, Moreira FF, Hearst A, Cherkauer K, Rainey KM. Theor Appl Genet; 2022 May 08; 135(5):1477-1491. PubMed ID: 35275253 [Abstract] [Full Text] [Related]
51. Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding. Zhang J, Wang X, Lu Y, Bhusal SJ, Song Q, Cregan PB, Yen Y, Brown M, Jiang GL. Mol Plant; 2018 Mar 05; 11(3):460-472. PubMed ID: 29305230 [Abstract] [Full Text] [Related]
52. Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean. Liu C, Chen X, Wang W, Hu X, Han W, He Q, Yang H, Xiang S, Gai J. Int J Mol Sci; 2021 Feb 04; 22(4):. PubMed ID: 33557103 [Abstract] [Full Text] [Related]
53. Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. Park C, Dwiyanti MS, Nagano AJ, Liu B, Yamada T, Abe J. BMC Plant Biol; 2019 Nov 21; 19(1):510. PubMed ID: 31752696 [Abstract] [Full Text] [Related]
54. Predicted genetic gains from introgressing chromosome segments from exotic germplasm into an elite soybean cultivar. Ru S, Bernardo R. Theor Appl Genet; 2020 Feb 21; 133(2):605-614. PubMed ID: 31781783 [Abstract] [Full Text] [Related]
55. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch SR. PLoS One; 2015 Feb 21; 10(3):e0119873. PubMed ID: 25785447 [Abstract] [Full Text] [Related]
56. Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. Adhikari A, Steffenson BJ, Smith KP, Smith M, Dill-Macky R. Theor Appl Genet; 2020 Mar 21; 133(3):1019-1037. PubMed ID: 31900499 [Abstract] [Full Text] [Related]
57. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Eskandari M, Cober ER, Rajcan I. Theor Appl Genet; 2013 Jun 21; 126(6):1677-87. PubMed ID: 23536049 [Abstract] [Full Text] [Related]
58. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z. Genome Biol; 2017 Aug 24; 18(1):161. PubMed ID: 28838319 [Abstract] [Full Text] [Related]
59. Impact of multiple selective breeding programs on genetic diversity in soybean germplasm. Viana JPG, Fang Y, Avalos A, Song Q, Nelson R, Hudson ME. Theor Appl Genet; 2022 May 24; 135(5):1591-1602. PubMed ID: 35220446 [Abstract] [Full Text] [Related]