These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
377 related items for PubMed ID: 32195243
1. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision. Zago M, Luzzago M, Marangoni T, De Cecco M, Tarabini M, Galli M. Front Bioeng Biotechnol; 2020; 8():181. PubMed ID: 32195243 [Abstract] [Full Text] [Related]
2. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Takeda I, Yamada A, Onodera H. Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107 [Abstract] [Full Text] [Related]
3. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP, Shanmugam TA, Ranganathan R, Krishnan C. Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [Abstract] [Full Text] [Related]
12. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM, Laende EK, Davis EM, Selbie WS, Deluzio KJ. J Biomech; 2021 Oct 11; 127():110665. PubMed ID: 34380101 [Abstract] [Full Text] [Related]
13. Development of a Robust, Simple, and Affordable Human Gait Analysis System Using Bottom-Up Pose Estimation With a Smartphone Camera. Viswakumar A, Rajagopalan V, Ray T, Gottipati P, Parimi C. Front Physiol; 2021 Oct 11; 12():784865. PubMed ID: 35069246 [Abstract] [Full Text] [Related]
14. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives. Clark RA, Mentiplay BF, Hough E, Pua YH. Gait Posture; 2019 Feb 11; 68():193-200. PubMed ID: 30500731 [Abstract] [Full Text] [Related]
16. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B, Eichmann A, Lauer K, Prock K, Krondorfer P, Siragy T, Dumphart B. J Biomech; 2023 Oct 11; 159():111801. PubMed ID: 37738945 [Abstract] [Full Text] [Related]
17. Automating Video-Based Two-Dimensional Motion Analysis in Sport? Implications for Gait Event Detection, Pose Estimation, and Performance Parameter Analysis. Mundt M, Colyer S, Wade L, Needham L, Evans M, Millett E, Alderson J. Scand J Med Sci Sports; 2024 Jul 11; 34(7):e14693. PubMed ID: 38984681 [Abstract] [Full Text] [Related]
18. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L, Needham L, McGuigan P, Bilzon J. PeerJ; 2022 Jul 11; 10():e12995. PubMed ID: 35237469 [Abstract] [Full Text] [Related]
19. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease. Ripic Z, Signorile JF, Best TM, Jacobs KA, Nienhuis M, Whitelaw C, Moenning C, Eltoukhy M. J Biomech; 2023 Jun 11; 155():111645. PubMed ID: 37216895 [Abstract] [Full Text] [Related]
20. Agreement Between Spatiotemporal Gait Parameters Measured by a Markerless Motion Capture System and Two Reference Systems-a Treadmill-Based Photoelectric Cell and High-Speed Video Analyses: Comparative Study. García-Pinillos F, Jaén-Carrillo D, Soto Hermoso V, Latorre Román P, Delgado P, Martinez C, Carton A, Roche Seruendo L. JMIR Mhealth Uhealth; 2020 Oct 23; 8(10):e19498. PubMed ID: 33095181 [Abstract] [Full Text] [Related] Page: [Next] [New Search]