These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. An Ab Initio QM/MM Study of the Electrostatic Contribution to Catalysis in the Active Site of Ketosteroid Isomerase. Wang X, He X. Molecules; 2018 Sep 20; 23(10):. PubMed ID: 30241317 [Abstract] [Full Text] [Related]
23. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method. Zhang D. Sci Rep; 2017 Mar 16; 7():44645. PubMed ID: 28300179 [Abstract] [Full Text] [Related]
26. BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations. Lier B, Poliak P, Marquetand P, Westermayr J, Oostenbrink C. J Phys Chem Lett; 2022 May 05; 13(17):3812-3818. PubMed ID: 35467875 [Abstract] [Full Text] [Related]
27. Accelerated Quantum Mechanics/Molecular Mechanics Simulations via Neural Networks Incorporated with Mechanical Embedding Scheme. Zhou B, Zhou Y, Xie D. J Chem Theory Comput; 2023 Feb 28; 19(4):1157-1169. PubMed ID: 36724190 [Abstract] [Full Text] [Related]
28. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H, Lu Z, Parks JM, Burger SK, Yang W. J Chem Phys; 2008 Jan 21; 128(3):034105. PubMed ID: 18205486 [Abstract] [Full Text] [Related]
29. Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain. Anisimov VM, Cavasotto CN. J Comput Chem; 2011 Jul 30; 32(10):2254-63. PubMed ID: 21484840 [Abstract] [Full Text] [Related]
30. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z, Yang W. J Chem Phys; 2004 Jul 01; 121(1):89-100. PubMed ID: 15260525 [Abstract] [Full Text] [Related]
31. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. Shen L, Wu J, Yang W. J Chem Theory Comput; 2016 Oct 11; 12(10):4934-4946. PubMed ID: 27552235 [Abstract] [Full Text] [Related]
32. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning. Cheng Z, Du J, Zhang L, Ma J, Li W, Li S. Phys Chem Chem Phys; 2022 Jan 19; 24(3):1326-1337. PubMed ID: 34718360 [Abstract] [Full Text] [Related]
33. Calculation of protein-ligand interaction energies by a fragmentation approach combining high-level quantum chemistry with classical many-body effects. Söderhjelm P, Aquilante F, Ryde U. J Phys Chem B; 2009 Aug 13; 113(32):11085-94. PubMed ID: 19618955 [Abstract] [Full Text] [Related]
34. A deep transfer learning-based protocol accelerates full quantum mechanics calculation of protein. Han Y, Wang Z, Chen A, Ali I, Cai J, Ye S, Wei Z, Li J. Brief Bioinform; 2023 Jan 19; 24(1):. PubMed ID: 36516300 [Abstract] [Full Text] [Related]
35. Predicting Relative Binding Affinity Using Nonequilibrium QM/MM Simulations. Wang M, Mei Y, Ryde U. J Chem Theory Comput; 2018 Dec 11; 14(12):6613-6622. PubMed ID: 30362750 [Abstract] [Full Text] [Related]
36. Effect of protein environment within cytochrome P450cam evaluated using a polarizable-embedding QM/MM method. Thellamurege NM, Hirao H. J Phys Chem B; 2014 Feb 27; 118(8):2084-92. PubMed ID: 24484442 [Abstract] [Full Text] [Related]
38. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments. Lahey SJ, Thien Phuc TN, Rowley CN. J Chem Inf Model; 2020 Dec 28; 60(12):6258-6268. PubMed ID: 33263401 [Abstract] [Full Text] [Related]