These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 32226362

  • 1. Spinal Interneurons With Dual Axon Projections to Knee-Extensor and Hip-Extensor Motor Pools.
    Nguyen KH, Scheurich TE, Gu T, Berkowitz A.
    Front Neural Circuits; 2020; 14():7. PubMed ID: 32226362
    [Abstract] [Full Text] [Related]

  • 2. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons.
    Bannatyne BA, Hao ZZ, Dyer GMC, Watanabe M, Maxwell DJ, Berkowitz A.
    J Neurosci; 2020 Mar 25; 40(13):2680-2694. PubMed ID: 32066584
    [Abstract] [Full Text] [Related]

  • 3. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses.
    Berkowitz A, Stein PS.
    J Neurosci; 1994 Aug 25; 14(8):5105-19. PubMed ID: 8046471
    [Abstract] [Full Text] [Related]

  • 4. Motor pattern deletions and modular organization of turtle spinal cord.
    Stein PS.
    Brain Res Rev; 2008 Jan 25; 57(1):118-24. PubMed ID: 17826841
    [Abstract] [Full Text] [Related]

  • 5. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN, Gonsalves GG.
    J Neurophysiol; 1999 Jun 25; 81(6):2977-87. PubMed ID: 10368414
    [Abstract] [Full Text] [Related]

  • 6. Rostral spinal cord segments are sufficient to generate a rhythm for both locomotion and scratching but affect their hip extensor phases differently.
    Hao ZZ, Meier ML, Berkowitz A.
    J Neurophysiol; 2014 Jul 01; 112(1):147-55. PubMed ID: 24717347
    [Abstract] [Full Text] [Related]

  • 7. Rhythmicity of spinal neurons activated during each form of fictive scratching in spinal turtles.
    Berkowitz A.
    J Neurophysiol; 2001 Aug 01; 86(2):1026-36. PubMed ID: 11495970
    [Abstract] [Full Text] [Related]

  • 8. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS, Victor JC, Field EC, Currie SN.
    J Neurosci; 1995 Jun 01; 15(6):4343-55. PubMed ID: 7790913
    [Abstract] [Full Text] [Related]

  • 9. Distributions of active spinal cord neurons during swimming and scratching motor patterns.
    Mui JW, Willis KL, Hao ZZ, Berkowitz A.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Dec 01; 198(12):877-89. PubMed ID: 22986994
    [Abstract] [Full Text] [Related]

  • 10. Timing of knee-related spinal neurons during fictive rostral scratching in the turtle.
    Stein PS, Daniels-McQueen S.
    J Neurophysiol; 2003 Dec 01; 90(6):3585-93. PubMed ID: 12968015
    [Abstract] [Full Text] [Related]

  • 11. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A, Hao ZZ.
    Integr Comp Biol; 2011 Dec 01; 51(6):890-902. PubMed ID: 21700568
    [Abstract] [Full Text] [Related]

  • 12. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions.
    Stein PS, Daniels-McQueen S, Lai J, Liu Z, Corman TS.
    J Neurophysiol; 2016 Jun 01; 115(6):3130-9. PubMed ID: 27030737
    [Abstract] [Full Text] [Related]

  • 13. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS, McCullough ML, Currie SN.
    J Neurosci; 1998 Jan 01; 18(1):467-79. PubMed ID: 9412523
    [Abstract] [Full Text] [Related]

  • 14. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.
    Berkowitz A, Stein PS.
    J Neurosci; 1994 Aug 01; 14(8):5089-104. PubMed ID: 8046470
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Physiology and morphology indicate that individual spinal interneurons contribute to diverse limb movements.
    Berkowitz A.
    J Neurophysiol; 2005 Dec 01; 94(6):4455-70. PubMed ID: 16148279
    [Abstract] [Full Text] [Related]

  • 17. Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching.
    Stein PS, Daniels-McQueen S.
    J Neurosci; 2002 Aug 01; 22(15):6800-9. PubMed ID: 12151560
    [Abstract] [Full Text] [Related]

  • 18. Step, swim, and scratch motor patterns in the turtle.
    Earhart GM, Stein PS.
    J Neurophysiol; 2000 Nov 01; 84(5):2181-90. PubMed ID: 11067964
    [Abstract] [Full Text] [Related]

  • 19. Spinal cord coordination of hindlimb movements in the turtle: intralimb temporal relationships during scratching and swimming.
    Field EC, Stein PS.
    J Neurophysiol; 1997 Sep 01; 78(3):1394-403. PubMed ID: 9310430
    [Abstract] [Full Text] [Related]

  • 20. Multifunctional and specialized spinal interneurons for turtle limb movements.
    Berkowitz A.
    Ann N Y Acad Sci; 2010 Jun 01; 1198():119-32. PubMed ID: 20536926
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.