These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton. Shi RQ, Ren JN, Wang CH. Math Biosci Eng; 2020 May 25; 17(4):3836-3868. PubMed ID: 32987557 [Abstract] [Full Text] [Related]
5. Chaos control in a multiple delayed phytoplankton-zooplankton model with group defense and predator's interference. Sajan, Dubey B. Chaos; 2021 Aug 25; 31(8):083101. PubMed ID: 34470255 [Abstract] [Full Text] [Related]
9. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. Meng XY, Qin NN, Huo HF. J Biol Dyn; 2018 Dec 25; 12(1):342-374. PubMed ID: 29616595 [Abstract] [Full Text] [Related]
11. Stability and Hopf bifurcation of an intraguild prey-predator fishery model with two delays and Michaelis-Menten type predator harvest. Hou M, Zhang T, Yuan S. Math Biosci Eng; 2024 Apr 22; 21(4):5687-5711. PubMed ID: 38872554 [Abstract] [Full Text] [Related]
16. A phytoplankton-zooplankton-fish model with chaos control: In the presence of fear effect and an additional food. Sajan, Sasmal SK, Dubey B. Chaos; 2022 Jan 22; 32(1):013114. PubMed ID: 35105117 [Abstract] [Full Text] [Related]
17. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication. Luo J. Math Biosci; 2013 Oct 22; 245(2):126-36. PubMed ID: 23791607 [Abstract] [Full Text] [Related]
20. Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters. Zhang X, Zhao H. J Theor Biol; 2014 Dec 21; 363():390-403. PubMed ID: 25172773 [Abstract] [Full Text] [Related] Page: [Next] [New Search]