These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


697 related items for PubMed ID: 32234322

  • 1. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F, Loffredo MR, Troiano C, Bobone S, Malanovic N, Eichmann TO, Caprio L, Canale VC, Park Y, Mangoni ML, Stella L.
    Biochim Biophys Acta Biomembr; 2020 Aug 01; 1862(8):183291. PubMed ID: 32234322
    [Abstract] [Full Text] [Related]

  • 2. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N, Lohner K.
    Biochim Biophys Acta; 2016 May 01; 1858(5):936-46. PubMed ID: 26577273
    [Abstract] [Full Text] [Related]

  • 3. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM, Gopal R, Park Y.
    Amino Acids; 2016 Feb 01; 48(2):505-22. PubMed ID: 26450121
    [Abstract] [Full Text] [Related]

  • 4. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB.
    PLoS One; 2015 Feb 01; 10(12):e0144611. PubMed ID: 26656394
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM, Walker C, Epand RF, Magarvey NA.
    Biochim Biophys Acta; 2016 May 01; 1858(5):980-7. PubMed ID: 26514603
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23.
    Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L.
    ACS Chem Biol; 2014 Sep 19; 9(9):2003-7. PubMed ID: 25058470
    [Abstract] [Full Text] [Related]

  • 15. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
    Batoni G, Maisetta G, Esin S.
    Biochim Biophys Acta; 2016 May 19; 1858(5):1044-60. PubMed ID: 26525663
    [Abstract] [Full Text] [Related]

  • 16. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity.
    Zhong C, Liu T, Gou S, He Y, Zhu N, Zhu Y, Wang L, Liu H, Zhang Y, Yao J, Ni J.
    Eur J Med Chem; 2019 Nov 15; 182():111636. PubMed ID: 31466017
    [Abstract] [Full Text] [Related]

  • 17. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R, Shprung T, Shai Y.
    Biochim Biophys Acta; 2015 Nov 15; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap.
    Mohanram H, Bhattacharjya S.
    Antimicrob Agents Chemother; 2014 Nov 15; 58(4):1987-96. PubMed ID: 24419338
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.