These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 3223763
1. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Fathepure BZ, Boyd SA. Appl Environ Microbiol; 1988 Dec; 54(12):2976-80. PubMed ID: 3223763 [Abstract] [Full Text] [Related]
2. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Freedman DL, Gossett JM. Appl Environ Microbiol; 1989 Sep; 55(9):2144-51. PubMed ID: 2552919 [Abstract] [Full Text] [Related]
3. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. DiStefano TD, Gossett JM, Zinder SH. Appl Environ Microbiol; 1991 Aug; 57(8):2287-92. PubMed ID: 1768101 [Abstract] [Full Text] [Related]
4. Methanogenic and perchloroethylene-dechlorinating activity of anaerobic granular sludge. Kennes C, Veiga MC, Bhatnagar L. Appl Microbiol Biotechnol; 1998 Oct; 50(4):484-8. PubMed ID: 9830099 [Abstract] [Full Text] [Related]
5. Isolation of a methanogenic bacterium, Methanosarcina sp. strain FR, for its ability to degrade high concentration of perchloroethylene. Cabirol N, Villemur R, Perrier J, Jacob F, Fouillet B, Chambon P. Can J Microbiol; 1998 Dec; 44(12):1142-7. PubMed ID: 10383226 [Abstract] [Full Text] [Related]
6. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC. Environ Sci Technol; 2009 Feb 01; 43(3):690-7. PubMed ID: 19245003 [Abstract] [Full Text] [Related]
7. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture. Cabirol N, Perrier J, Jacob F, Fouillet B, Chambon P. Bull Environ Contam Toxicol; 1996 May 01; 56(5):817-24. PubMed ID: 8661867 [No Abstract] [Full Text] [Related]
8. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions. Kästner M. Appl Environ Microbiol; 1991 Jul 01; 57(7):2039-46. PubMed ID: 1892393 [Abstract] [Full Text] [Related]
9. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor. Yu S, Semprini L. J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006 [Abstract] [Full Text] [Related]
10. Anaerobic bacteria that dechlorinate perchloroethene. Fathepure BZ, Nengu JP, Boyd SA. Appl Environ Microbiol; 1987 Nov 15; 53(11):2671-4. PubMed ID: 3426224 [Abstract] [Full Text] [Related]
11. Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Guiot SR, Cimpoia R, Kuhn R, Alaplantive A. Environ Sci Technol; 2008 Apr 15; 42(8):3011-7. PubMed ID: 18497159 [Abstract] [Full Text] [Related]
12. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Vogel TM, McCarty PL. Appl Environ Microbiol; 1985 May 15; 49(5):1080-3. PubMed ID: 3923927 [Abstract] [Full Text] [Related]
13. Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. Terzenbach DP, Blaut M. FEMS Microbiol Lett; 1994 Oct 15; 123(1-2):213-8. PubMed ID: 7988892 [Abstract] [Full Text] [Related]
14. Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-S. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I. FEMS Microbiol Ecol; 2007 Oct 15; 62(1):98-107. PubMed ID: 17908097 [Abstract] [Full Text] [Related]
15. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195. Maymó-Gatell X, Anguish T, Zinder SH. Appl Environ Microbiol; 1999 Jul 15; 65(7):3108-13. PubMed ID: 10388710 [Abstract] [Full Text] [Related]
16. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH. Appl Environ Microbiol; 1995 Nov 15; 61(11):3928-33. PubMed ID: 8526505 [Abstract] [Full Text] [Related]
17. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Lee IS, Bae JH, McCarty PL. J Contam Hydrol; 2007 Oct 30; 94(1-2):76-85. PubMed ID: 17610987 [Abstract] [Full Text] [Related]
18. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Aulenta F, Majone M, Verbo P, Tandoi V. Biodegradation; 2002 Oct 30; 13(6):411-24. PubMed ID: 12713133 [Abstract] [Full Text] [Related]
19. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Sekar R, Taillefert M, DiChristina TJ. Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932 [Abstract] [Full Text] [Related]
20. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I. Chemosphere; 2008 Mar 01; 71(4):639-48. PubMed ID: 18155126 [Abstract] [Full Text] [Related] Page: [Next] [New Search]