These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


433 related items for PubMed ID: 32241913

  • 1. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V, Kuznedelov K, Severinov K.
    J Biol Chem; 2020 May 08; 295(19):6509-6517. PubMed ID: 32241913
    [Abstract] [Full Text] [Related]

  • 2. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A, Ishida T, Yoshimura M, Kimura Y, Sawa S.
    Plant Cell Physiol; 2019 Oct 01; 60(10):2255-2262. PubMed ID: 31198958
    [Abstract] [Full Text] [Related]

  • 3. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK.
    Nature; 2015 Jul 23; 523(7561):481-5. PubMed ID: 26098369
    [Abstract] [Full Text] [Related]

  • 4. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M, Zuo Z, Yin Z, Gu J.
    J Chem Inf Model; 2022 Jun 27; 62(12):3057-3066. PubMed ID: 35666156
    [Abstract] [Full Text] [Related]

  • 5. Crystal Structure of Staphylococcus aureus Cas9.
    Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O.
    Cell; 2015 Aug 27; 162(5):1113-26. PubMed ID: 26317473
    [Abstract] [Full Text] [Related]

  • 6. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S, Nishimasu H, Ishitani R, Nureki O.
    Mol Cell; 2016 Mar 17; 61(6):886-94. PubMed ID: 26990991
    [Abstract] [Full Text] [Related]

  • 7. Structural insights into a high fidelity variant of SpCas9.
    Guo M, Ren K, Zhu Y, Tang Z, Wang Y, Zhang B, Huang Z.
    Cell Res; 2019 Mar 17; 29(3):183-192. PubMed ID: 30664728
    [Abstract] [Full Text] [Related]

  • 8. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q.
    PLoS Biol; 2019 Oct 17; 17(10):e3000496. PubMed ID: 31603896
    [Abstract] [Full Text] [Related]

  • 9. SaCas9 Requires 5'-NNGRRT-3' PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells.
    Xie H, Tang L, He X, Liu X, Zhou C, Liu J, Ge X, Li J, Liu C, Zhao J, Qu J, Song Z, Gu F.
    Biotechnol J; 2018 Apr 17; 13(4):e1700561. PubMed ID: 29247600
    [Abstract] [Full Text] [Related]

  • 10. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
    Halat M, Klimek-Chodacka M, Orleanska J, Baranska M, Baranski R.
    Int J Mol Sci; 2021 Mar 13; 22(6):. PubMed ID: 33805827
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Expanding the Genome-Editing Toolbox with Abyssicoccus albus Cas9 Using a Unique Protospacer Adjacent Motif Sequence.
    Nakamura A, Yamamoto H, Yano T, Hasegawa R, Makino Y, Mitsuda N, Terakawa T, Ito S, Sugano SS.
    CRISPR J; 2024 Aug 13; 7(4):197-209. PubMed ID: 39111827
    [Abstract] [Full Text] [Related]

  • 13. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX, Fu YW, Zhao JJ, Zhang F, Li SA, Zhao M, Wen W, Zhang L, Cheng T, Zhang JP, Zhang XB.
    Genomics Proteomics Bioinformatics; 2023 Dec 13; 21(6):1206-1220. PubMed ID: 36549468
    [Abstract] [Full Text] [Related]

  • 14. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9.
    Kaya H, Mikami M, Endo A, Endo M, Toki S.
    Sci Rep; 2016 May 26; 6():26871. PubMed ID: 27226350
    [Abstract] [Full Text] [Related]

  • 15. Structure and Engineering of Francisella novicida Cas9.
    Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O.
    Cell; 2016 Feb 25; 164(5):950-61. PubMed ID: 26875867
    [Abstract] [Full Text] [Related]

  • 16. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
    Briner AE, Henriksen ED, Barrangou R.
    Cold Spring Harb Protoc; 2016 Jul 01; 2016(7):. PubMed ID: 27371591
    [Abstract] [Full Text] [Related]

  • 17. Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation.
    Mekler V, Minakhin L, Severinov K.
    Proc Natl Acad Sci U S A; 2017 May 23; 114(21):5443-5448. PubMed ID: 28484024
    [Abstract] [Full Text] [Related]

  • 18. Programming PAM antennae for efficient CRISPR-Cas9 DNA editing.
    Wang F, Hao Y, Li Q, Li J, Zhang H, Zhang X, Wang L, Bustamante C, Fan C.
    Sci Adv; 2020 May 23; 6(19):eaay9948. PubMed ID: 32494703
    [Abstract] [Full Text] [Related]

  • 19. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.
    Anders C, Bargsten K, Jinek M.
    Mol Cell; 2016 Mar 17; 61(6):895-902. PubMed ID: 26990992
    [Abstract] [Full Text] [Related]

  • 20. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA, Hutmacher M, Lynch MD.
    CRISPR J; 2020 Dec 17; 3(6):550-561. PubMed ID: 33346713
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.