These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 3224658
1. Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits. Nagao S. Exp Brain Res; 1988; 73(3):489-97. PubMed ID: 3224658 [Abstract] [Full Text] [Related]
2. Role of cerebellar flocculus in adaptive interaction between optokinetic eye movement response and vestibulo-ocular reflex in pigmented rabbits. Nagao S. Exp Brain Res; 1989; 77(3):541-51. PubMed ID: 2806446 [Abstract] [Full Text] [Related]
3. Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Nagao S. Exp Brain Res; 1989; 77(3):531-40. PubMed ID: 2806445 [Abstract] [Full Text] [Related]
4. Contribution of oculomotor signals to the behavior of rabbit floccular Purkinje cells during reflex eye movements. Nagao S. Neurosci Res; 1991 Oct; 12(1):169-84. PubMed ID: 1660984 [Abstract] [Full Text] [Related]
5. Eye velocity is not the major factor that determines mossy fiber responses of rabbit floccular Purkinje cells to head and screen oscillation. Nagao S. Exp Brain Res; 1990 Oct; 80(1):221-4. PubMed ID: 2358032 [Abstract] [Full Text] [Related]
6. Optokinetic response of simple spikes of Purkinje cells in the cerebellar flocculus and nodulus of the pigmented rabbit. Kano M, Kano MS, Maekawa K. Exp Brain Res; 1991 Oct; 87(3):484-96. PubMed ID: 1783019 [Abstract] [Full Text] [Related]
7. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. De Zeeuw CI, Wylie DR, Stahl JS, Simpson JI. J Neurophysiol; 1995 Nov; 74(5):2051-64. PubMed ID: 8592196 [Abstract] [Full Text] [Related]
8. Analysis of signal content of Purkinje cell responses to optokinetic stimuli in the rabbit cerebellar flocculus by selective lesions of brainstem pathways. Miyashita Y, Nagao S. Neurosci Res; 1984 Aug; 1(4):223-41. PubMed ID: 6536897 [Abstract] [Full Text] [Related]
9. Role of the primate flocculus in adaptation of the vestibulo-ocular reflex. Watanabe E. Neurosci Res; 1985 Oct; 3(1):20-38. PubMed ID: 3878953 [Abstract] [Full Text] [Related]
10. Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit. I. The flocculus. Kusunoki M, Kano M, Kano MS, Maekawa K. Exp Brain Res; 1990 Oct; 80(2):225-37. PubMed ID: 2358040 [Abstract] [Full Text] [Related]
11. Climbing fiber responses of Purkinje cells to retinal image movement in cat cerebellar flocculus. Fushiki H, Sato Y, Miura A, Kawasaki T. J Neurophysiol; 1994 Apr; 71(4):1336-50. PubMed ID: 8035218 [Abstract] [Full Text] [Related]
12. Floccular complex spike response to transparent retinal slip. Frens MA, Mathoera AL, van der Steen J. Neuron; 2001 Jun; 30(3):795-801. PubMed ID: 11430812 [Abstract] [Full Text] [Related]
13. Eye velocity responsiveness and its proprioceptive component in the floccular Purkinje cells of the alert pigmented rabbit. Miyashita Y. Exp Brain Res; 1984 Jun; 55(1):81-90. PubMed ID: 6745357 [Abstract] [Full Text] [Related]
14. Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Watanabe E. Brain Res; 1984 Apr 09; 297(1):169-74. PubMed ID: 6609741 [Abstract] [Full Text] [Related]
15. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. Hirata Y, Highstein SM. J Neurophysiol; 2001 May 09; 85(5):2267-88. PubMed ID: 11353040 [Abstract] [Full Text] [Related]
16. Contribution of cerebellar intracortical inhibition to Purkinje cell response during vestibulo-ocular reflex of alert rabbits. Miyashita Y, Nagao S. J Physiol; 1984 Jun 09; 351():251-62. PubMed ID: 6611408 [Abstract] [Full Text] [Related]