These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1068 related items for PubMed ID: 32247150

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effects of cadmium on mercury accumulation and transformation by Arundo donax L.
    Li X, Zhao L, Teng Y, Luo Y, Zhao Q.
    Environ Sci Pollut Res Int; 2023 May; 30(22):62461-62469. PubMed ID: 36943572
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].
    Han Z, Hu X, Hu Z.
    Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):945-50. PubMed ID: 16110677
    [Abstract] [Full Text] [Related]

  • 9. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M, Imanifard A.
    Int J Phytoremediation; 2021 May; 23(14):1525-1537. PubMed ID: 33945349
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China.
    Wu J, Long J, Liu L, Li J, Liao H, Zhang M, Zhao C, Wu Q.
    Int J Environ Res Public Health; 2018 Aug 25; 15(9):. PubMed ID: 30149620
    [Abstract] [Full Text] [Related]

  • 12. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A, Pidlisnyuk V, Abit K, Nurzhanov C, Kenessov B, Stefanovska T, Erickson L.
    Environ Sci Pollut Res Int; 2019 May 25; 26(13):13320-13333. PubMed ID: 30903469
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Exploring the accumulation capacity of dominant plants based on soil heavy metals forms and assessing heavy metals contamination characteristics near gold tailings ponds.
    Du Y, Tian Z, Zhao Y, Wang X, Ma Z, Yu C.
    J Environ Manage; 2024 Feb 25; 351():119838. PubMed ID: 38145590
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of phytoremediation capability of French marigold (Tagetes patula) and African marigold (Tagetes erecta) under heavy metals contaminated soils.
    Biswal B, Singh SK, Patra A, Mohapatra KK.
    Int J Phytoremediation; 2022 Feb 25; 24(9):945-954. PubMed ID: 34634952
    [Abstract] [Full Text] [Related]

  • 17. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.
    Chai Y, Guo J, Chai S, Cai J, Xue L, Zhang Q.
    Chemosphere; 2015 Sep 25; 134():67-75. PubMed ID: 25911049
    [Abstract] [Full Text] [Related]

  • 18. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S, Rana V, Kumar A, Maiti SK.
    Environ Sci Pollut Res Int; 2017 Oct 25; 24(29):22990-23005. PubMed ID: 28819831
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons.
    Steliga T, Kluk D.
    Ecotoxicol Environ Saf; 2020 May 25; 194():110409. PubMed ID: 32155481
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.