These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 32247612

  • 1. Visualization of individual microRNA molecules in fixed cells and tissues using target-primed padlock probe assay.
    Lin C, Jiang M, Duan S, Qiu J, Hong Y, Wang X, Chen X, Ke R.
    Biochem Biophys Res Commun; 2020 Jun 04; 526(3):607-611. PubMed ID: 32247612
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H, Li L, Duan L, Wang X, Xie Y, Tong L, Wang Q, Tang B.
    Anal Chem; 2013 Aug 20; 85(16):7941-7. PubMed ID: 23855808
    [Abstract] [Full Text] [Related]

  • 5. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells.
    Ge J, Zhang LL, Liu SJ, Yu RQ, Chu X.
    Anal Chem; 2014 Feb 04; 86(3):1808-15. PubMed ID: 24417222
    [Abstract] [Full Text] [Related]

  • 6. A microRNA detection system based on padlock probes and rolling circle amplification.
    Jonstrup SP, Koch J, Kjems J.
    RNA; 2006 Sep 04; 12(9):1747-52. PubMed ID: 16888321
    [Abstract] [Full Text] [Related]

  • 7. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction.
    Lu W, Wang Y, Song S, Chen C, Yao B, Wang M.
    Analyst; 2018 Oct 08; 143(20):5046-5053. PubMed ID: 30238116
    [Abstract] [Full Text] [Related]

  • 8. Highly specific quantification of microRNA by coupling probe-rolling circle amplification and Förster resonance energy transfer.
    Wu X, Zhu S, Huang P, Chen Y.
    Anal Biochem; 2016 Jun 01; 502():16-23. PubMed ID: 26973220
    [Abstract] [Full Text] [Related]

  • 9. A dual discrimination mode for improved specificity towards let-7a detection via a single-base mutated padlock probe-based exponential rolling circle amplification.
    Li R, Wang Y, Wang P, Lu J.
    Luminescence; 2017 Dec 01; 32(8):1574-1581. PubMed ID: 28685952
    [Abstract] [Full Text] [Related]

  • 10. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H, Zhang Y, Zhang S, Sun M, Li W, Jiang Y, Wu ZS.
    Anal Chim Acta; 2019 Jan 24; 1047():172-178. PubMed ID: 30567647
    [Abstract] [Full Text] [Related]

  • 11. Specific and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification combined with lateral flow strip.
    Yao M, Lv X, Deng Y, Rasheed M.
    Anal Chim Acta; 2019 May 09; 1055():115-125. PubMed ID: 30782362
    [Abstract] [Full Text] [Related]

  • 12. Liposome-encoded magnetic beads initiated by padlock exponential rolling circle amplification for portable and accurate quantification of microRNAs.
    Xue Q, Kong Y, Wang H, Jiang W.
    Chem Commun (Camb); 2017 Sep 28; 53(78):10772-10775. PubMed ID: 28880327
    [Abstract] [Full Text] [Related]

  • 13. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification.
    Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y.
    Angew Chem Int Ed Engl; 2009 Sep 28; 48(18):3268-72. PubMed ID: 19219883
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells.
    Liu H, Tian T, Ji D, Ren N, Ge S, Yan M, Yu J.
    Biosens Bioelectron; 2016 Nov 15; 85():909-914. PubMed ID: 27315515
    [Abstract] [Full Text] [Related]

  • 16. Detection of microRNAs using toehold-initiated rolling circle amplification and fluorescence resonance energy transfer.
    Liang K, Wang H, Li P, Zhu Y, Liu J, Tang B.
    Talanta; 2020 Jan 15; 207():120285. PubMed ID: 31594625
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs.
    Xu H, Zhang S, Ouyang C, Wang Z, Wu D, Liu Y, Jiang Y, Wu ZS.
    Talanta; 2019 Jan 15; 192():175-181. PubMed ID: 30348375
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.