These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 32254785
41. Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide. Lee MJ, Song JA, Choi JH, Shin JH, Myeong JW, Lee KP, Kim T, Park KE, Oh BK. Biosensors (Basel); 2023 Feb 17; 13(2):. PubMed ID: 36832055 [Abstract] [Full Text] [Related]
42. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Santhosh M, Chinnadayyala SR, Kakoti A, Goswami P. Biosens Bioelectron; 2014 Sep 15; 59():370-6. PubMed ID: 24752148 [Abstract] [Full Text] [Related]
43. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Liu H, Jia L, Wang Y, Wang M, Gao Z, Ren X. Anal Bioanal Chem; 2019 May 15; 411(12):2531-2543. PubMed ID: 30828757 [Abstract] [Full Text] [Related]
44. Tripeptide-Assisted Gold Nanocluster Formation for Fe3+ and Cu2+ Sensing. Youn J, Kang P, Crowe J, Thornsbury C, Kim P, Qin Z, Lee J. Molecules; 2024 May 21; 29(11):. PubMed ID: 38893292 [Abstract] [Full Text] [Related]
45. Synthesis of Exosome-Based Fluorescent Gold Nanoclusters for Cellular Imaging Applications. Lee ES, Cha BS, Kim S, Park KS. Int J Mol Sci; 2021 Apr 23; 22(9):. PubMed ID: 33922681 [Abstract] [Full Text] [Related]
46. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Halawa MI, Gao W, Saqib M, Kitte SA, Wu F, Xu G. Biosens Bioelectron; 2017 Sep 15; 95():8-14. PubMed ID: 28399445 [Abstract] [Full Text] [Related]
47. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability. Oliveira Silva C, Petersen SB, Pinto Reis C, Rijo P, Molpeceres J, Vorum H, Neves-Petersen MT. PLoS One; 2015 Sep 15; 10(12):e0144454. PubMed ID: 26656259 [Abstract] [Full Text] [Related]
48. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters. Zhang L, Han F. Nanotechnology; 2018 Apr 20; 29(16):165702. PubMed ID: 29424708 [Abstract] [Full Text] [Related]
49. Surface-Engineered Gold Nanoclusters with Biological Assembly-Amplified Emission for Multimode Imaging. Jiang X, Wang X, Yao C, Zhu S, Liu L, Liu R, Li L. J Phys Chem Lett; 2019 Sep 05; 10(17):5237-5243. PubMed ID: 31438679 [Abstract] [Full Text] [Related]
50. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. Chang HC, Chang YF, Fan NC, Ho JA. ACS Appl Mater Interfaces; 2014 Sep 05; 6(21):18824-31. PubMed ID: 25323388 [Abstract] [Full Text] [Related]
51. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. Wang HB, Bai HY, Mao AL, Gan T, Liu YM. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug 05; 219():375-381. PubMed ID: 31059889 [Abstract] [Full Text] [Related]
52. In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells. West AL, Schaeublin NM, Griep MH, Maurer-Gardner EI, Cole DP, Fakner AM, Hussain SM, Karna SP. ACS Appl Mater Interfaces; 2016 Aug 24; 8(33):21221-7. PubMed ID: 27328035 [Abstract] [Full Text] [Related]
53. Identifying three routes of the sensing mechanism for casein-directed gold nanoclusters. Wang S, Wang Y, Yang X. Colloids Surf B Biointerfaces; 2018 Sep 01; 169():348-355. PubMed ID: 29803150 [Abstract] [Full Text] [Related]
54. Green synthesis of pregabalin-stabilized gold nanoclusters and their applications in sensing and drug release. Ali R, Alfeneekh B, Chigurupati S, Saleh SM. Arch Pharm (Weinheim); 2022 Apr 01; 355(4):e2100426. PubMed ID: 35088474 [Abstract] [Full Text] [Related]
55. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. You JG, Tseng WL. Anal Chim Acta; 2019 Oct 31; 1078():101-111. PubMed ID: 31358207 [Abstract] [Full Text] [Related]
56. Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Zhang J, Tu L, Zhao S, Liu G, Wang Y, Wang Y, Yue Z. Biosens Bioelectron; 2015 May 15; 67():296-302. PubMed ID: 25190086 [Abstract] [Full Text] [Related]
57. Fluorescence turn-on assay for detection of serum D-penicillamine based on papain@AuNCs-Cu2+ complex. Chen Y, Qiao J, Liu Q, Zhang M, Qi L. Anal Chim Acta; 2018 Oct 05; 1026():133-139. PubMed ID: 29852989 [Abstract] [Full Text] [Related]
58. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster. Hosseini M, Ahmadi E, Borghei YS, Reza Ganjali M. Methods Appl Fluoresc; 2017 Mar 08; 5(1):015005. PubMed ID: 28276344 [Abstract] [Full Text] [Related]
59. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y. Biosens Bioelectron; 2017 May 15; 91():734-740. PubMed ID: 28130993 [Abstract] [Full Text] [Related]
60. Anchoring Au nanoclusters into coordination polymers: A novel approach toward ATP detection and its application. Mu J, Li X, Jia Q. Talanta; 2024 Sep 01; 277():126306. PubMed ID: 38795592 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]