These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 32262496
21. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T. Life Sci; 2016 Mar 01; 148():139-44. PubMed ID: 26874032 [Abstract] [Full Text] [Related]
22. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. Wu Z, Li Q, Pan Y, Yao Y, Tang S, Su J, Shin JW, Wei J, Zhao J. Int J Nanomedicine; 2017 Mar 01; 12():3637-3651. PubMed ID: 28553104 [Abstract] [Full Text] [Related]
23. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Fernandes JS, Gentile P, Martins M, Neves NM, Miller C, Crawford A, Pires RA, Hatton P, Reis RL. Acta Biomater; 2016 Oct 15; 44():168-77. PubMed ID: 27554018 [Abstract] [Full Text] [Related]
24. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. Li X, Shi J, Dong X, Zhang L, Zeng H. J Biomed Mater Res A; 2008 Jan 15; 84(1):84-91. PubMed ID: 17600329 [Abstract] [Full Text] [Related]
25. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation. Ba Z, Chen Z, Huang Y, Feng D, Zhao Q, Zhu J, Wu D. Int J Nanomedicine; 2018 Jan 15; 13():3883-3896. PubMed ID: 30013342 [Abstract] [Full Text] [Related]
26. Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation. Magri AMP, Fernandes KR, Assis L, Kido HW, Avanzi IR, Medeiros MDC, Granito RN, Braga FJC, Rennó ACM. Int J Biol Macromol; 2019 Aug 01; 134():869-881. PubMed ID: 31102678 [Abstract] [Full Text] [Related]
27. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. Haaparanta AM, Uppstu P, Hannula M, Ellä V, Rosling A, Kellomäki M. Mater Sci Eng C Mater Biol Appl; 2015 Nov 01; 56():457-66. PubMed ID: 26249615 [Abstract] [Full Text] [Related]
28. Bioabsorbable scaffolds for guided bone regeneration and generation. Kellomäki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Törmälä P. Biomaterials; 2000 Dec 01; 21(24):2495-505. PubMed ID: 11071599 [Abstract] [Full Text] [Related]
31. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K, Chen B, Nie W, Zhou X, Feng W, Wang W, Chen L, Mo X, Wei Y, He C. ACS Appl Mater Interfaces; 2016 Feb 17; 8(6):4137-48. PubMed ID: 26736029 [Abstract] [Full Text] [Related]
32. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR. Biomaterials; 2010 Apr 17; 31(10):2806-15. PubMed ID: 20045554 [Abstract] [Full Text] [Related]
33. Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery. Porgham Daryasari M, Dusti Telgerd M, Hossein Karami M, Zandi-Karimi A, Akbarijavar H, Khoobi M, Seyedjafari E, Birhanu G, Khosravian P, SadatMahdavi F. Artif Cells Nanomed Biotechnol; 2019 Dec 17; 47(1):4020-4029. PubMed ID: 31595797 [Abstract] [Full Text] [Related]
35. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH, El-Amin SF, Scott KD, Laurencin CT. J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560 [Abstract] [Full Text] [Related]
36. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N, Wang M. Biofabrication; 2012 Mar 01; 4(1):015003. PubMed ID: 22258057 [Abstract] [Full Text] [Related]
37. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Gerhardt LC, Widdows KL, Erol MM, Burch CW, Sanz-Herrera JA, Ochoa I, Stämpfli R, Roqan IS, Gabe S, Ansari T, Boccaccini AR. Biomaterials; 2011 Jun 01; 32(17):4096-108. PubMed ID: 21411138 [Abstract] [Full Text] [Related]
38. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS. Biomaterials; 2006 Mar 01; 27(8):1399-409. PubMed ID: 16169074 [Abstract] [Full Text] [Related]
39. Laser powder bed fusion printed poly-ether-ether-ketone/bioactive glass composite scaffolds with dual-scale pores for enhanced osseointegration and bone ingrowth. Wang H, Shu Z, Chen P, Su J, Zhu H, Jiang J, Yan C, Xiao J, Shi Y. Acta Biomater; 2024 Nov 01; 189():605-620. PubMed ID: 39389225 [Abstract] [Full Text] [Related]
40. LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds. Tang L, Wei W, Wang X, Qian J, Li J, He A, Yang L, Jiang X, Li X, Wei J. RSC Adv; 2018 Mar 16; 8(20):10794-10805. PubMed ID: 35541558 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]