These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


477 related items for PubMed ID: 32266611

  • 1. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes.
    Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR.
    Photosynth Res; 2020 May; 144(2):195-208. PubMed ID: 32266611
    [Abstract] [Full Text] [Related]

  • 2. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV.
    Nat Plants; 2017 Jan 30; 3():16225. PubMed ID: 28134919
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous refolding of denatured PsbS and reconstitution with LHCII into liposomes of thylakoid lipids.
    Liu C, Gao Z, Liu K, Sun R, Cui C, Holzwarth AR, Yang C.
    Photosynth Res; 2016 Jan 30; 127(1):109-16. PubMed ID: 26168990
    [Abstract] [Full Text] [Related]

  • 4. The PsbS protein and low pH are necessary and sufficient to induce quenching in the light-harvesting complex of plants LHCII.
    Nicol L, Croce R.
    Sci Rep; 2021 Apr 01; 11(1):7415. PubMed ID: 33795805
    [Abstract] [Full Text] [Related]

  • 5. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems.
    Ware MA, Giovagnetti V, Belgio E, Ruban AV.
    J Photochem Photobiol B; 2015 Nov 01; 152(Pt B):301-7. PubMed ID: 26233261
    [Abstract] [Full Text] [Related]

  • 6. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II.
    Ostroumov EE, Götze JP, Reus M, Lambrev PH, Holzwarth AR.
    Photosynth Res; 2020 May 01; 144(2):171-193. PubMed ID: 32307623
    [Abstract] [Full Text] [Related]

  • 7. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.
    Townsend AJ, Saccon F, Giovagnetti V, Wilson S, Ungerer P, Ruban AV.
    Biochim Biophys Acta Bioenerg; 2018 Sep 01; 1859(9):666-675. PubMed ID: 29548769
    [Abstract] [Full Text] [Related]

  • 8. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching.
    Wilk L, Grunwald M, Liao PN, Walla PJ, Kühlbrandt W.
    Proc Natl Acad Sci U S A; 2013 Apr 02; 110(14):5452-6. PubMed ID: 23509270
    [Abstract] [Full Text] [Related]

  • 9. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.
    Sylak-Glassman EJ, Malnoë A, De Re E, Brooks MD, Fischer AL, Niyogi KK, Fleming GR.
    Proc Natl Acad Sci U S A; 2014 Dec 09; 111(49):17498-503. PubMed ID: 25422428
    [Abstract] [Full Text] [Related]

  • 10. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP, Ruban AV.
    Plant J; 2010 Jan 09; 61(2):283-9. PubMed ID: 19843315
    [Abstract] [Full Text] [Related]

  • 11. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching.
    Shukla MK, Watanabe A, Wilson S, Giovagnetti V, Moustafa EI, Minagawa J, Ruban AV.
    J Biol Chem; 2020 Dec 18; 295(51):17816-17826. PubMed ID: 33454016
    [Abstract] [Full Text] [Related]

  • 12. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
    Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW.
    Plant J; 2012 Jan 18; 69(2):289-301. PubMed ID: 21919982
    [Abstract] [Full Text] [Related]

  • 13. PsbS interactions involved in the activation of energy dissipation in Arabidopsis.
    Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P.
    Nat Plants; 2016 Feb 01; 2():15225. PubMed ID: 27249196
    [Abstract] [Full Text] [Related]

  • 14. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification.
    Kalituho L, Grasses T, Graf M, Rech J, Jahns P.
    Planta; 2006 Feb 01; 223(3):532-41. PubMed ID: 16136330
    [Abstract] [Full Text] [Related]

  • 15. PsbS-dependent and -independent mechanisms regulate carotenoid-chlorophyll energy coupling in grana thylakoids.
    Gacek DA, Holleboom CP, Tietz S, Kirchhoff H, Walla PJ.
    FEBS Lett; 2019 Nov 01; 593(22):3190-3197. PubMed ID: 31444795
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S.
    Gerotto C, Franchin C, Arrigoni G, Morosinotto T.
    Plant Physiol; 2015 Aug 01; 168(4):1747-61. PubMed ID: 26069151
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts.
    Kereïche S, Kiss AZ, Kouril R, Boekema EJ, Horton P.
    FEBS Lett; 2010 Feb 19; 584(4):759-64. PubMed ID: 20035752
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.