These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Strain and electric-field tunable valley states in 2D van der Waals MoTe2/WTe2 heterostructures. Zheng Z, Wang X, Mi W. J Phys Condens Matter; 2016 Dec 21; 28(50):505003. PubMed ID: 27783569 [Abstract] [Full Text] [Related]
4. Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure. Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li SS. J Phys Chem Lett; 2015 Jul 02; 6(13):2483-8. PubMed ID: 26266723 [Abstract] [Full Text] [Related]
8. Structural and Electronic Properties of Heterostructures Composed of Antimonene and Monolayer MoS2. Zhou C, Li X, Hu T. Nanomaterials (Basel); 2020 Nov 27; 10(12):. PubMed ID: 33260916 [Abstract] [Full Text] [Related]
9. Tunable Contact Types and Interfacial Electronic Properties in TaS2/MoS2 and TaS2/WSe2 Heterostructures. Zhu X, Jiang H, Zhang Y, Wang D, Fan L, Chen Y, Qu X, Yang L, Liu Y. Molecules; 2023 Jul 24; 28(14):. PubMed ID: 37513478 [Abstract] [Full Text] [Related]
11. Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2. Xiao J, Long M, Li X, Zhang Q, Xu H, Chan KS. J Phys Condens Matter; 2014 Oct 08; 26(40):405302. PubMed ID: 25224268 [Abstract] [Full Text] [Related]
12. First-principles investigations of the controllable electronic properties and contact types of type II MoTe2/MoS2 van der Waals heterostructures. Nguyen ST, Hieu NV, Le-Quoc H, Nguyen-Ba K, Nguyen CV, Phuc HV, Nguyen CQ. Nanoscale Adv; 2024 Jul 09; 6(14):3624-3631. PubMed ID: 38989517 [Abstract] [Full Text] [Related]
13. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T. Acc Chem Res; 2015 Jan 20; 48(1):65-72. PubMed ID: 25489917 [Abstract] [Full Text] [Related]
15. Intriguing electronic properties of two-dimensional MoS2/TM2CO2 (TM = Ti, Zr, or Hf) hetero-bilayers: type-II semiconductors with tunable band gaps. Li X, Dai Y, Ma Y, Liu Q, Huang B. Nanotechnology; 2015 Mar 27; 26(13):135703. PubMed ID: 25751763 [Abstract] [Full Text] [Related]
16. Electroic and optical properties of germanene/MoS2 heterobilayers: first principles study. Li H, Yu Y, Xue X, Xie J, Si H, Lee JY, Fu A. J Mol Model; 2018 Nov 06; 24(12):333. PubMed ID: 30402737 [Abstract] [Full Text] [Related]
17. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. Pierucci D, Henck H, Avila J, Balan A, Naylor CH, Patriarche G, Dappe YJ, Silly MG, Sirotti F, Johnson AT, Asensio MC, Ouerghi A. Nano Lett; 2016 Jul 13; 16(7):4054-61. PubMed ID: 27281693 [Abstract] [Full Text] [Related]
18. Biaxial strain, electric field and interlayer distance-tailored electronic structure and magnetic properties of two-dimensional g-C3N4/Li-adsorbed Cr2Ge2Te6 van der Waals heterostructures. Gao Y, Zhou B, Wang X. Phys Chem Chem Phys; 2021 Mar 18; 23(10):6171-6181. PubMed ID: 33687408 [Abstract] [Full Text] [Related]
19. Vertical strain and electric field tunable band alignment in type-II ZnO/MoSSe van der Waals heterostructures. Wang P, Zong Y, Liu H, Wen H, Liu Y, Wu HB, Xia JB. Phys Chem Chem Phys; 2021 Jan 21; 23(2):1510-1519. PubMed ID: 33400744 [Abstract] [Full Text] [Related]
20. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure. Huang L, Li Y, Wei Z, Li J. Sci Rep; 2015 Nov 10; 5():16448. PubMed ID: 26553370 [Abstract] [Full Text] [Related] Page: [Next] [New Search]