These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG, Hamarneh G. Neuroimage; 2017 Feb 01; 146():1038-1049. PubMed ID: 27693612 [Abstract] [Full Text] [Related]
3. Validation of an MRI Brain Injury and Growth Scoring System in Very Preterm Infants Scanned at 29- to 35-Week Postmenstrual Age. George JM, Fiori S, Fripp J, Pannek K, Bursle J, Moldrich RX, Guzzetta A, Coulthard A, Ware RS, Rose SE, Colditz PB, Boyd RN. AJNR Am J Neuroradiol; 2017 Jul 01; 38(7):1435-1442. PubMed ID: 28522659 [Abstract] [Full Text] [Related]
6. PPREMO: a prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome. George JM, Boyd RN, Colditz PB, Rose SE, Pannek K, Fripp J, Lingwood BE, Lai MM, Kong AH, Ware RS, Coulthard A, Finn CM, Bandaranayake SE. BMC Pediatr; 2015 Sep 16; 15():123. PubMed ID: 26377791 [Abstract] [Full Text] [Related]
8. A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants. He L, Li H, Wang J, Chen M, Gozdas E, Dillman JR, Parikh NA. Sci Rep; 2020 Sep 15; 10(1):15072. PubMed ID: 32934282 [Abstract] [Full Text] [Related]
9. Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework. He L, Li H, Holland SK, Yuan W, Altaye M, Parikh NA. Neuroimage Clin; 2018 Sep 15; 18():290-297. PubMed ID: 29876249 [Abstract] [Full Text] [Related]
14. Microstructural Measures of the Inferior Longitudinal Fasciculus Predict Later Cognitive and Language Development in Infants Born With Extremely Low Birth Weight. Bugada MC, Kline JE, Parikh NA. J Child Neurol; 2021 Oct 15; 36(11):981-989. PubMed ID: 34187223 [Abstract] [Full Text] [Related]
17. Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates. Liu M, Lu M, Kim SY, Lee HJ, Duffy BA, Yuan S, Chai Y, Cole JH, Wu X, Toga AW, Jahanshad N, Gano D, Barkovich AJ, Xu D, Kim H. Eur Radiol; 2024 Jun 15; 34(6):3601-3611. PubMed ID: 37957363 [Abstract] [Full Text] [Related]
19. MRI at term equivalent age for predicting long-term neurodevelopmental outcome in preterm infants - a cohort study. Balakrishnan U, Amboiram P, Ninan B, Chandrasekharan A, Rangaswamy R, Subramanian L. J Matern Fetal Neonatal Med; 2020 Jun 15; 33(11):1867-1873. PubMed ID: 30282505 [Abstract] [Full Text] [Related]