These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 32280212
21. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC. J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2122-30. PubMed ID: 22847998 [Abstract] [Full Text] [Related]
22. TiO2 nanotube stimulate chondrogenic differentiation of limb mesenchymal cells by modulating focal activity. Kim D, Choi B, Song J, Kim S, Oh S, Jin EH, Kang SS, Jin EJ. Exp Mol Med; 2011 Aug 31; 43(8):455-61. PubMed ID: 21677506 [Abstract] [Full Text] [Related]
23. Black TiO2 nanotubes: Efficient electrodes for triggering electric field-induced stimulation of stem cell growth. Mazare A, Park J, Simons S, Mohajernia S, Hwang I, Yoo JE, Schneider H, Fischer MJ, Schmuki P. Acta Biomater; 2019 Oct 01; 97():681-688. PubMed ID: 31419565 [Abstract] [Full Text] [Related]
24. Fabrication and characterization of TiO2-ZrO2-ZrTiO4 nanotubes on TiZr alloy manufactured via anodization. Minagar S, Berndt CC, Gengenbach T, Wen C. J Mater Chem B; 2014 Jan 07; 2(1):71-83. PubMed ID: 32261300 [Abstract] [Full Text] [Related]
25. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Lai M, Jin Z, Su Z. Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():490-497. PubMed ID: 28183637 [Abstract] [Full Text] [Related]
26. Early adhesion of human mesenchymal stem cells on TiO(2) surfaces studied by single-cell force spectroscopy measurements. Bertoncini P, Le Chevalier S, Lavenus S, Layrolle P, Louarn G. J Mol Recognit; 2012 May 01; 25(5):262-9. PubMed ID: 22528187 [Abstract] [Full Text] [Related]
27. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Lin WT, Tan HL, Duan ZL, Yue B, Ma R, He G, Tang TT. Int J Nanomedicine; 2014 May 01; 9():1215-30. PubMed ID: 24634583 [Abstract] [Full Text] [Related]
28. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces. Imani R, Kabaso D, Erdani Kreft M, Gongadze E, Penic S, Elersic K, Kos A, Veranic P, Zorec R, Iglic A. Croat Med J; 2012 Dec 01; 53(6):577-85. PubMed ID: 23275323 [Abstract] [Full Text] [Related]
29. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Rajyalakshmi A, Ercan B, Balasubramanian K, Webster TJ. Int J Nanomedicine; 2011 Dec 01; 6():1765-71. PubMed ID: 21980239 [Abstract] [Full Text] [Related]
30. Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Bariana M, Dwivedi P, Ranjitkar S, Kaidonis JA, Losic D, Anderson PJ. Colloids Surf B Biointerfaces; 2017 Feb 01; 150():59-67. PubMed ID: 27883932 [Abstract] [Full Text] [Related]
31. Transparent titanium dioxide nanotubes: Processing, characterization, and application in establishing cellular response mechanisms. Meyerink JG, Kota D, Wood ST, Crawford GA. Acta Biomater; 2018 Oct 01; 79():364-374. PubMed ID: 30172934 [Abstract] [Full Text] [Related]
32. Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study. Balasundaram G, Shimpi TM, Sanow WR, Storey DM, Kitchell BS, Webster TJ. J Biomed Mater Res A; 2011 Aug 01; 98(2):192-200. PubMed ID: 21548070 [Abstract] [Full Text] [Related]
33. Enhanced osteogenic differentiation of bone mesenchymal stem cells on magnesium-incorporated titania nanotube arrays. Yan Y, Wei Y, Yang R, Xia L, Zhao C, Gao B, Zhang X, Fu J, Wang Q, Xu N. Colloids Surf B Biointerfaces; 2019 Jul 01; 179():309-316. PubMed ID: 30981066 [Abstract] [Full Text] [Related]
34. Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Lavenus S, Pilet P, Guicheux J, Weiss P, Louarn G, Layrolle P. Acta Biomater; 2011 Apr 01; 7(4):1525-34. PubMed ID: 21199693 [Abstract] [Full Text] [Related]
35. Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. Hamlekhan A, Butt A, Patel S, Royhman D, Takoudis C, Sukotjo C, Yuan J, Jursich G, Mathew MT, Hendrickson W, Virdi A, Shokuhfar T. PLoS One; 2014 Apr 01; 9(5):e96213. PubMed ID: 24788345 [Abstract] [Full Text] [Related]
36. Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties. Guo LQ, Hu YW, Yu B, Davis E, Irvin R, Yan XG, Li DY. Sci Rep; 2016 Feb 26; 6():22247. PubMed ID: 26915564 [Abstract] [Full Text] [Related]
37. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. Yu WQ, Jiang XQ, Zhang FQ, Xu L. J Biomed Mater Res A; 2010 Sep 15; 94(4):1012-22. PubMed ID: 20694968 [Abstract] [Full Text] [Related]
38. Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells. Wu S, Zhang D, Bai J, Zheng H, Deng J, Gou Z, Gao C. J Biomed Mater Res A; 2020 Nov 01; 108(11):2305-2318. PubMed ID: 32363805 [Abstract] [Full Text] [Related]
39. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence. Kulkarni M, Mazare A, Park J, Gongadze E, Killian MS, Kralj S, von der Mark K, Iglič A, Schmuki P. Acta Biomater; 2016 Nov 01; 45():357-366. PubMed ID: 27581395 [Abstract] [Full Text] [Related]
40. Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. Bauer S, Park J, Pittrof A, Song YY, von der Mark K, Schmuki P. Integr Biol (Camb); 2011 Sep 01; 3(9):927-36. PubMed ID: 21829821 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]