These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


293 related items for PubMed ID: 32302110

  • 1. Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants.
    Qiu H, Zhu X, Wan H, Xu L, Zhang Q, Hou P, Fan Z, Lyu Y, Ni D, Usadel B, Fernie AR, Wen W.
    J Agric Food Chem; 2020 May 13; 68(19):5483-5495. PubMed ID: 32302110
    [Abstract] [Full Text] [Related]

  • 2. Integrated metabolomics and transcriptomic analysis reveals metabolic changes of flavor compounds of Camellia assamica host plant after parasitized by Viscumarticulatum.
    Zhou F, Liu XY, Liu LL, Hou Y, Han Z, Zhang L.
    Plant Physiol Biochem; 2023 Dec 13; 205():108157. PubMed ID: 37939544
    [Abstract] [Full Text] [Related]

  • 3. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus).
    Wang X, Xiang Y, Sun M, Xiong Y, Li C, Zhang T, Ma W, Wang Y, Liu X.
    BMC Plant Biol; 2023 Dec 11; 23(1):638. PubMed ID: 38072959
    [Abstract] [Full Text] [Related]

  • 4. Comparison of Metabolome and Transcriptome of Flavonoid Biosynthesis Pathway in a Purple-Leaf Tea Germplasm Jinmingzao and a Green-Leaf Tea Germplasm Huangdan reveals Their Relationship with Genetic Mechanisms of Color Formation.
    Chen X, Wang P, Zheng Y, Gu M, Lin X, Wang S, Jin S, Ye N.
    Int J Mol Sci; 2020 Jun 11; 21(11):. PubMed ID: 32545190
    [Abstract] [Full Text] [Related]

  • 5. Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis.
    Wu LY, Fang ZT, Lin JK, Sun Y, Du ZZ, Guo YL, Liu JH, Liang YR, Ye JH.
    J Proteome Res; 2019 Jan 04; 18(1):252-264. PubMed ID: 30427694
    [Abstract] [Full Text] [Related]

  • 6. Regulation of color transition in purple tea (Camellia sinensis).
    Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, Shankar R, Kumar R.
    Planta; 2019 Dec 18; 251(1):35. PubMed ID: 31853722
    [Abstract] [Full Text] [Related]

  • 7. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model.
    Zhao J, Li P, Xia T, Wan X.
    Crit Rev Biotechnol; 2020 Aug 18; 40(5):667-688. PubMed ID: 32321331
    [Abstract] [Full Text] [Related]

  • 8. Gene Coexpression Networks Reveal Key Drivers of Flavonoid Variation in Eleven Tea Cultivars (Camellia sinensis).
    Zheng C, Ma JQ, Chen JD, Ma CL, Chen W, Yao MZ, Chen L.
    J Agric Food Chem; 2019 Sep 04; 67(35):9967-9978. PubMed ID: 31403784
    [Abstract] [Full Text] [Related]

  • 9. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ.
    BMC Genomics; 2015 Jul 29; 16(1):560. PubMed ID: 26220550
    [Abstract] [Full Text] [Related]

  • 10. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (Camellia sinensis) and Oil Tea (Camellia oleifera) Plants.
    Tai Y, Ling C, Wang H, Yang L, She G, Wang C, Yu S, Chen W, Liu C, Wan X.
    J Agric Food Chem; 2019 Sep 11; 67(36):10235-10244. PubMed ID: 31436988
    [Abstract] [Full Text] [Related]

  • 11. Metabolite signatures of diverse Camellia sinensis tea populations.
    Yu X, Xiao J, Chen S, Yu Y, Ma J, Lin Y, Li R, Lin J, Fu Z, Zhou Q, Chao Q, Chen L, Yang Z, Liu R.
    Nat Commun; 2020 Nov 04; 11(1):5586. PubMed ID: 33149146
    [Abstract] [Full Text] [Related]

  • 12. Insights into the Metabolite Profiles of Two Camellia (Theaceae) Species in Yunnan Province through Metabolomic and Transcriptomic Analysis.
    Niu M, Li R, Li X, Yang H, Ding J, Zhou X, He Y, Xu Y, Qu Q, Liu Z, Li J.
    Biomolecules; 2024 Sep 03; 14(9):. PubMed ID: 39334872
    [Abstract] [Full Text] [Related]

  • 13. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar 'Tieguanyin' compared with cultivar 'Benshan'.
    Guo Y, Zhu C, Zhao S, Zhang S, Wang W, Fu H, Li X, Zhou C, Chen L, Lin Y, Lai Z.
    BMC Genomics; 2019 Apr 03; 20(1):265. PubMed ID: 30943892
    [Abstract] [Full Text] [Related]

  • 14. Transcriptomic and Translatomic Analyses Reveal Insights into the Developmental Regulation of Secondary Metabolism in the Young Shoots of Tea Plants (Camellia sinensis L.).
    Wu LY, Lv YQ, Ye Y, Liang YR, Ye JH.
    J Agric Food Chem; 2020 Sep 30; 68(39):10750-10762. PubMed ID: 32818378
    [Abstract] [Full Text] [Related]

  • 15. Repressed Gene Expression of Photosynthetic Antenna Proteins Associated with Yellow Leaf Variation as Revealed by Bulked Segregant RNA-seq in Tea Plant Camellia sinensis.
    Wang JY, Chen JD, Wang SL, Chen L, Ma CL, Yao MZ.
    J Agric Food Chem; 2020 Jul 29; 68(30):8068-8079. PubMed ID: 32633946
    [Abstract] [Full Text] [Related]

  • 16. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq.
    Wang YN, Tang L, Hou Y, Wang P, Yang H, Wei CL.
    Funct Integr Genomics; 2016 Jul 29; 16(4):383-98. PubMed ID: 27098524
    [Abstract] [Full Text] [Related]

  • 17. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X.
    BMC Plant Biol; 2015 Aug 07; 15():190. PubMed ID: 26245644
    [Abstract] [Full Text] [Related]

  • 18. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis).
    Zhu J, Xu Q, Zhao S, Xia X, Yan X, An Y, Mi X, Guo L, Samarina L, Wei C.
    Plant Sci; 2020 Jan 07; 290():110306. PubMed ID: 31779914
    [Abstract] [Full Text] [Related]

  • 19. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development.
    Guo F, Guo Y, Wang P, Wang Y, Ni D.
    Planta; 2017 Dec 07; 246(6):1139-1152. PubMed ID: 28825226
    [Abstract] [Full Text] [Related]

  • 20. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading.
    Liu L, Li Y, She G, Zhang X, Jordan B, Chen Q, Zhao J, Wan X.
    BMC Plant Biol; 2018 Oct 12; 18(1):233. PubMed ID: 30314466
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.