These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. He W, Wallack MJ, Kim KY, Zhang X, Yang W, Zhu X, Feng Y, Logan BE. Water Res; 2016 Nov 15; 105():351-360. PubMed ID: 27639344 [Abstract] [Full Text] [Related]
24. Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell. Fan L, Xi Y. Bioprocess Biosyst Eng; 2022 May 15; 45(5):855-864. PubMed ID: 35230555 [Abstract] [Full Text] [Related]
27. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using in situ graphene/polyaniline modified titanium oxide anode. Li Z, Yang S, Song Y, Xu H, Wang Z, Wang W, Zhao Y. Environ Technol; 2020 Jan 15; 41(4):420-429. PubMed ID: 30015569 [Abstract] [Full Text] [Related]
31. Sustainable power generation from sewage and energy recovery from wastewater with variable resistance using microbial fuel cell. Bose D, Dhawan H, Kandpal V, Vijay P, Gopinath M. Enzyme Microb Technol; 2018 Nov 15; 118():92-101. PubMed ID: 30143205 [Abstract] [Full Text] [Related]
33. Use of cassette-electrode microbial fuel cell for wastewater treatment. Miyahara M, Hashimoto K, Watanabe K. J Biosci Bioeng; 2013 Feb 15; 115(2):176-81. PubMed ID: 23041137 [Abstract] [Full Text] [Related]
34. Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell. Elakkiya E, Matheswaran M. Bioresour Technol; 2013 May 15; 136():407-12. PubMed ID: 23567709 [Abstract] [Full Text] [Related]
35. Co-Fe-N@biochar anode for improvment the electricity generation performance of microbial fuel cell. Zhao X, Xu Y, Yin F, Li Y, Li X, Wei Q. Environ Technol; 2024 Oct 15; 45(24):5048-5062. PubMed ID: 37970847 [Abstract] [Full Text] [Related]
36. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst. Yang Q, Yang S, Liu G, Zhou B, Yu X, Yin Y, Yang J, Zhao H. Chemosphere; 2021 Apr 15; 268():128800. PubMed ID: 33143885 [Abstract] [Full Text] [Related]
37. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. Penteado ED, Fernandez-Marchante CM, Zaiat M, Gonzalez ER, Rodrigo MA. Environ Technol; 2017 Jun 15; 38(11):1333-1341. PubMed ID: 27603229 [Abstract] [Full Text] [Related]
38. Evaluation of microbial fuel cell (MFC) for bioelectricity generation and pollutants removal from sugar beet processing wastewater (SBPW). Rahman A, Borhan MS, Rahman S. Water Sci Technol; 2018 Jan 15; 77(1-2):387-397. PubMed ID: 29377823 [Abstract] [Full Text] [Related]
39. Anode Modification with Fe2O3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater. Nosek D, Mikołajczyk T, Cydzik-Kwiatkowska A. Int J Environ Res Public Health; 2023 Jan 31; 20(3):. PubMed ID: 36767954 [Abstract] [Full Text] [Related]
40. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Kim JR, Min B, Logan BE. Appl Microbiol Biotechnol; 2005 Jul 31; 68(1):23-30. PubMed ID: 15647935 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]