These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 32321637

  • 1. Portable, automated foot progression angle gait modification via a proof-of-concept haptic feedback-sensorized shoe.
    Xia H, Charlton JM, Shull PB, Hunt MA.
    J Biomech; 2020 Jun 23; 107():109789. PubMed ID: 32321637
    [Abstract] [Full Text] [Related]

  • 2. Validation of a smart shoe for estimating foot progression angle during walking gait.
    Xia H, Xu J, Wang J, Hunt MA, Shull PB.
    J Biomech; 2017 Aug 16; 61():193-198. PubMed ID: 28780187
    [Abstract] [Full Text] [Related]

  • 3. Validity and reliability of a shoe-embedded sensor module for measuring foot progression angle during over-ground walking.
    Charlton JM, Xia H, Shull PB, Hunt MA.
    J Biomech; 2019 May 24; 89():123-127. PubMed ID: 31047695
    [Abstract] [Full Text] [Related]

  • 4. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A, Richards RE, Konrath JM, van den Noort JC, Schepers HM, Bellusci G, Harlaar J, Veltink PH.
    J Neuroeng Rehabil; 2018 Aug 15; 15(1):78. PubMed ID: 30111337
    [Abstract] [Full Text] [Related]

  • 5. Wearable Real-Time Haptic Biofeedback Foot Progression Angle Gait Modification to Assess Short-Term Retention and Cognitive Demand.
    Shull PB, Xia H, Charlton JM, Hunt MA.
    IEEE Trans Neural Syst Rehabil Eng; 2021 Aug 15; 29():1858-1865. PubMed ID: 34478376
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach.
    Uhlrich SD, Silder A, Beaupre GS, Shull PB, Delp SL.
    J Biomech; 2018 Jan 03; 66():103-110. PubMed ID: 29174534
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Foot progression angle estimation using a single foot-worn inertial sensor.
    Wouda FJ, Jaspar SLJO, Harlaar J, van Beijnum BF, Veltink PH.
    J Neuroeng Rehabil; 2021 Feb 17; 18(1):37. PubMed ID: 33596942
    [Abstract] [Full Text] [Related]

  • 10. Changes in foot progression angle during gait reduce the knee adduction moment and do not increase hip moments in individuals with knee osteoarthritis.
    Seagers K, Uhlrich SD, Kolesar JA, Berkson M, Kaneda JM, Beaupre GS, Delp SL.
    J Biomech; 2022 Aug 17; 141():111204. PubMed ID: 35772243
    [Abstract] [Full Text] [Related]

  • 11. Novel Foot Progression Angle Algorithm Estimation via Foot-Worn, Magneto-Inertial Sensing.
    Huang Y, Jirattigalachote W, Cutkosky MR, Zhu X, Shull PB.
    IEEE Trans Biomed Eng; 2016 Nov 17; 63(11):2278-2285. PubMed ID: 26849858
    [Abstract] [Full Text] [Related]

  • 12. Gait modification with subject-specific foot progression angle in people with moderate knee osteoarthritis: Investigation of knee adduction moment and muscle activity.
    Gholami S, Torkaman G, Bahrami F, Bayat N.
    Knee; 2022 Mar 17; 35():124-132. PubMed ID: 35313241
    [Abstract] [Full Text] [Related]

  • 13. Multi-day monitoring of foot progression angles during unsupervised, real-world walking in people with and without knee osteoarthritis.
    Charlton JM, Xia H, Shull PB, Eng JJ, Li LC, Hunt MA.
    Clin Biomech (Bristol); 2023 May 17; 105():105957. PubMed ID: 37084548
    [Abstract] [Full Text] [Related]

  • 14. Conservative interventions to improve foot progression angle and clinical measures in orthopedic and neurological patients - A systematic review and meta-analysis.
    Schelhaas R, Hajibozorgi M, Hortobágyi T, Hijmans JM, Greve C.
    J Biomech; 2022 Jan 17; 130():110831. PubMed ID: 34741811
    [Abstract] [Full Text] [Related]

  • 15. Wearable lower limb haptic feedback device for retraining Foot Progression Angle and Step Width.
    Chen DKY, Haller M, Besier TF.
    Gait Posture; 2017 Jun 17; 55():177-183. PubMed ID: 28460321
    [Abstract] [Full Text] [Related]

  • 16. The effect of modifying foot progression angle on the knee loading parameters in healthy participants with different static foot postures.
    Qiu R, Xu R, Wang D, Ming D.
    Gait Posture; 2020 Sep 17; 81():7-13. PubMed ID: 32650240
    [Abstract] [Full Text] [Related]

  • 17. Feasibility of Wearable Haptic Biofeedback Training for Reducing the Knee Abduction Moment During Overground Walking.
    Lindsey BW, Xu J, Chiasson D, Shull P, Cortes N.
    J Biomech Eng; 2021 Apr 01; 143(4):. PubMed ID: 32793949
    [Abstract] [Full Text] [Related]

  • 18. Contralateral limb foot rotation during unilateral toe-in or toe-out walking in people with knee osteoarthritis.
    Charlton JM, Krowchuk NM, Hatfield GL, Guenette JA, Hunt MA.
    Gait Posture; 2018 May 01; 62():132-134. PubMed ID: 29547793
    [Abstract] [Full Text] [Related]

  • 19. Changes in ambulatory knee adduction moment with lateral wedge insoles differ with respect to the natural foot progression angle.
    Ulrich B, Hoffmann L, Jolles BM, Favre J.
    J Biomech; 2020 Apr 16; 103():109655. PubMed ID: 32057444
    [Abstract] [Full Text] [Related]

  • 20. Magnetometer-Free, IMU-Based Foot Progression Angle Estimation for Real-Life Walking Conditions.
    Tan T, Strout ZA, Xia H, Orban M, Shull PB.
    IEEE Trans Neural Syst Rehabil Eng; 2021 Apr 16; 29():282-289. PubMed ID: 33360997
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.