These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Chen M, Grégoire DS, Bain JG, Blowes DW, Hug LA. Appl Environ Microbiol; 2024 Jun 18; 90(6):e0014324. PubMed ID: 38814057 [Abstract] [Full Text] [Related]
5. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Jones S, Santini JM. Essays Biochem; 2023 Aug 11; 67(4):685-699. PubMed ID: 37449416 [Abstract] [Full Text] [Related]
6. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR. Environ Toxicol; 2002 Feb 11; 17(1):40-8. PubMed ID: 11847973 [Abstract] [Full Text] [Related]
8. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Joulian C, Fonti V, Chapron S, Bryan CG, Guezennec AG. Res Microbiol; 2020 Feb 11; 171(7):260-270. PubMed ID: 32890633 [Abstract] [Full Text] [Related]
9. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage]. Su Y, Wang J, Peng SC, Yue ZB, Chen TH, Jin J. Huan Jing Ke Xue; 2010 Aug 11; 31(8):1858-63. PubMed ID: 21090305 [Abstract] [Full Text] [Related]
13. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis. Sun R, Zhang L, Wang X, Ou C, Lin N, Xu S, Qiu YY, Jiang F. Water Res; 2020 Oct 15; 185():116230. PubMed ID: 32784032 [Abstract] [Full Text] [Related]
14. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Labrenz M, Banfield JF. Microb Ecol; 2004 Apr 15; 47(3):205-17. PubMed ID: 14994175 [Abstract] [Full Text] [Related]
15. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching. Chen SY, Chou LC. Environ Sci Pollut Res Int; 2016 Aug 15; 23(16):16006-14. PubMed ID: 27146534 [Abstract] [Full Text] [Related]
17. Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acidand Metal-Tolerant Sulfate-Reducer. Nguyen HT, Nguyen HL, Nguyen MH, Nguyen TKN, Dinh HT. J Microbiol Biotechnol; 2020 Jul 28; 30(7):1005-1012. PubMed ID: 32160701 [Abstract] [Full Text] [Related]
18. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. Zhang X, Niu J, Liang Y, Liu X, Yin H. BMC Genet; 2016 Jan 19; 17():21. PubMed ID: 26781463 [Abstract] [Full Text] [Related]
19. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron. Bai H, Kang Y, Quan H, Han Y, Sun J, Feng Y. J Environ Manage; 2013 Nov 15; 129():350-6. PubMed ID: 23981707 [Abstract] [Full Text] [Related]
20. Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms. Xiao Y, Liu X, Ma L, Liang Y, Niu J, Gu Y, Zhang X, Hao X, Dong W, She S, Yin H. Appl Microbiol Biotechnol; 2016 Aug 15; 100(15):6871-6880. PubMed ID: 27094188 [Abstract] [Full Text] [Related] Page: [Next] [New Search]