These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 32333330

  • 1. Two-stage maximum likelihood approach for item-level missing data in regression.
    Chen L, Savalei V, Rhemtulla M.
    Behav Res Methods; 2020 Dec; 52(6):2306-2323. PubMed ID: 32333330
    [Abstract] [Full Text] [Related]

  • 2. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.
    Savalei V, Rhemtulla M.
    J Educ Behav Stat; 2017 Aug; 42(4):405-431. PubMed ID: 29276371
    [Abstract] [Full Text] [Related]

  • 3. Full Information Maximum Likelihood Estimation for Latent Variable Interactions With Incomplete Indicators.
    Cham H, Reshetnyak E, Rosenfeld B, Breitbart W.
    Multivariate Behav Res; 2017 Aug; 52(1):12-30. PubMed ID: 27834491
    [Abstract] [Full Text] [Related]

  • 4. A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data.
    Lee T, Shi D.
    Psychol Methods; 2021 Aug; 26(4):466-485. PubMed ID: 33507765
    [Abstract] [Full Text] [Related]

  • 5. Addressing Item-Level Missing Data: A Comparison of Proration and Full Information Maximum Likelihood Estimation.
    Mazza GL, Enders CK, Ruehlman LS.
    Multivariate Behav Res; 2015 Aug; 50(5):504-19. PubMed ID: 26610249
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level.
    Rombach I, Gray AM, Jenkinson C, Murray DW, Rivero-Arias O.
    BMC Med Res Methodol; 2018 Aug 28; 18(1):87. PubMed ID: 30153796
    [Abstract] [Full Text] [Related]

  • 8. Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data.
    Lim AJ, Cheung MW.
    Behav Res Methods; 2022 Jun 28; 54(3):1063-1077. PubMed ID: 34545537
    [Abstract] [Full Text] [Related]

  • 9. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study.
    Marshall A, Altman DG, Royston P, Holder RL.
    BMC Med Res Methodol; 2010 Jan 19; 10():7. PubMed ID: 20085642
    [Abstract] [Full Text] [Related]

  • 10. Normal Theory GLS Estimator for Missing Data: An Application to Item-Level Missing Data and a Comparison to Two-Stage ML.
    Savalei V, Rhemtulla M.
    Front Psychol; 2017 Jan 19; 8():767. PubMed ID: 28588523
    [Abstract] [Full Text] [Related]

  • 11. Combining proration and full information maximum likelihood in handling missing data in Likert scale items: A hybrid approach.
    Wu W, Gu F, Fukui S.
    Behav Res Methods; 2022 Apr 19; 54(2):922-940. PubMed ID: 34357540
    [Abstract] [Full Text] [Related]

  • 12. New computations for RMSEA and CFI following FIML and TS estimation with missing data.
    Zhang X, Savalei V.
    Psychol Methods; 2023 Apr 19; 28(2):263-283. PubMed ID: 35007107
    [Abstract] [Full Text] [Related]

  • 13. Missing data in a multi-item instrument were best handled by multiple imputation at the item score level.
    Eekhout I, de Vet HC, Twisk JW, Brand JP, de Boer MR, Heymans MW.
    J Clin Epidemiol; 2014 Mar 19; 67(3):335-42. PubMed ID: 24291505
    [Abstract] [Full Text] [Related]

  • 14. Maximum likelihood versus multiple imputation for missing data in small longitudinal samples with nonnormality.
    Shin T, Davison ML, Long JD.
    Psychol Methods; 2017 Sep 19; 22(3):426-449. PubMed ID: 27709974
    [Abstract] [Full Text] [Related]

  • 15. Missing data methods for dealing with missing items in quality of life questionnaires. A comparison by simulation of personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques applied to the SF-36 in the French 2003 decennial health survey.
    Peyre H, Leplège A, Coste J.
    Qual Life Res; 2011 Mar 19; 20(2):287-300. PubMed ID: 20882358
    [Abstract] [Full Text] [Related]

  • 16. How many imputations are really needed? Some practical clarifications of multiple imputation theory.
    Graham JW, Olchowski AE, Gilreath TD.
    Prev Sci; 2007 Sep 19; 8(3):206-13. PubMed ID: 17549635
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing?
    Mukaka M, White SA, Terlouw DJ, Mwapasa V, Kalilani-Phiri L, Faragher EB.
    Trials; 2016 Jul 22; 17():341. PubMed ID: 27450066
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.